159 research outputs found

    Non-linear Learning for Statistical Machine Translation

    Full text link
    Modern statistical machine translation (SMT) systems usually use a linear combination of features to model the quality of each translation hypothesis. The linear combination assumes that all the features are in a linear relationship and constrains that each feature interacts with the rest features in an linear manner, which might limit the expressive power of the model and lead to a under-fit model on the current data. In this paper, we propose a non-linear modeling for the quality of translation hypotheses based on neural networks, which allows more complex interaction between features. A learning framework is presented for training the non-linear models. We also discuss possible heuristics in designing the network structure which may improve the non-linear learning performance. Experimental results show that with the basic features of a hierarchical phrase-based machine translation system, our method produce translations that are better than a linear model.Comment: submitted to a conferenc

    Top-Rank Enhanced Listwise Optimization for Statistical Machine Translation

    Full text link
    Pairwise ranking methods are the basis of many widely used discriminative training approaches for structure prediction problems in natural language processing(NLP). Decomposing the problem of ranking hypotheses into pairwise comparisons enables simple and efficient solutions. However, neglecting the global ordering of the hypothesis list may hinder learning. We propose a listwise learning framework for structure prediction problems such as machine translation. Our framework directly models the entire translation list's ordering to learn parameters which may better fit the given listwise samples. Furthermore, we propose top-rank enhanced loss functions, which are more sensitive to ranking errors at higher positions. Experiments on a large-scale Chinese-English translation task show that both our listwise learning framework and top-rank enhanced listwise losses lead to significant improvements in translation quality.Comment: Accepted to CONLL 201

    Blade-Tip Vortex Noise Mitigation Traded-Off against Aerodynamic Design for Propellers of Future Electric Aircraft

    Get PDF
    We study noise generation at the blade tips of propellers designed for future electric aircraft propulsion and, furthermore, analyze the interrelationship between noise mitigation and aerodynamics improvement in terms of propeller geometric designs. Classical propellers with three or six blades and a conceptual propeller with three joined dual-blades are compared to understand the effects of blade tip vortices on the noise generation and aerodynamics. The dual blade of the conceptual propeller is constructed by joining the tips of two sub-blades. These propellers are designed to operate under the same freestream flow conditions and similar electric power consumption. The Improved Delayed Detached Eddy Simulation (IDDES) is adopted for the flow simulation to identify high-resolution time-dependent noise sources around the blade tips. The acoustic computations use a time-domain method based on the convective Ffowcs Williams–Hawkings (FW-H) equation. The thrust of the 3-blade conceptual propeller is\ua04%\ua0larger than the 3-blade classical propeller and\ua08%\ua0more than the 6-blade one, given that they have similar efficiencies. Blade tip vortices are found emitting broadband noise. Since the classical and conceptual 3-blade propellers have different geometries, especially at the blade tips, they introduce deviations in the vortex development. However, the differences are small regarding the broadband noise generation. As compared to the 6-blade classical propeller, both 3-blade propellers produce much larger noise. The reason is that the increased number of blades leads to the reduced strength of tip vortices. The findings indicate that the noise mitigation through the modification of the blade design and number can be traded-off by the changed aerodynamic performance
    • …
    corecore