148 research outputs found

    High levels of serum macrophage migration inhibitory factor and interleukin 10 are associated with a rapidly fatal outcome in patients with severe sepsis

    Get PDF
    SummaryObjectivesThe aim of this study was to delineate the association between high macrophage migration inhibitory factor (MIF) and interleukin 10 (IL-10) levels in the early phase of sepsis and rapidly fatal outcome.MethodsOne hundred and fifty-three adult subjects with the main diagnosis of severe sepsis (including septic shock) admitted directly from the emergency department of two tertiary medical centers and one regional teaching hospital between January 2009 and December 2011, were included prospectively. MIF and IL-10 levels were measured and outcomes were analyzed by Cox regression analysis according to the following outcomes: rapidly fatal outcome (RFO, death within 48h), late fatal outcome (LFO, death between 48h and 28 days), and survival at 28 days.ResultsAmong the three outcome groups, IL-10 levels were significantly higher in the RFO group (p < 0.001) and no significant differences were seen between the LFO and survivor groups. After Cox regression analysis, each incremental elevation of 1000 pg/ml in both IL-10 and MIF was independently associated with RFO in patients with severe sepsis. Each incremental elevation of 1000 pg/ml in IL-10 increased the RFO risk by a factor of 1.312 (95% confidence interval 1.094–1.575; p=0.003); this was the most significant factor leading to RFO in patients with severe sepsis.ConclusionsPatients with RFO exhibited simultaneously high MIF and IL-10 levels in the early phase of severe sepsis. Incremental increases in both IL-10 and MIF levels were associated with RFO in this patient group, and of the two, IL-10 was the most significant factor linked to RFO

    Taiwanese Dermatological Association consensus for the management of atopic dermatitis

    Get PDF
    AbstractBackground/ObjectiveThis report describes the 2014 consensus of the Taiwanese Dermatological Association (TDA) regarding the treatment of atopic dermatitis (AD). The TDA consensus is distributed to practices throughout Taiwan to provide recommendations for therapeutic approaches for AD patients to improve their quality of life.MethodsThe information in the consensus was agreed upon by a panel of national experts at TDA AD consensus meetings held on March 16, May 4, and June 29, 2014. The consensus was in part based on the 2013 Asia–Pacific AD guidelines and the guidelines of the American Academy of Dermatology, with modification to reflect the clinical practice in Taiwan.ResultsThe amendments were drafted after scientific discussions focused on the quality of evidence, risk, and benefits; all the consensus contents were voted on by the participating dermatologists, with approval by at least 75% for inclusion.ConclusionThe consensus provides a comprehensive overview of treatment for AD, with some local and cultural considerations for practitioners in Taiwan, especially the use of wet dressings/wraps, systemic immunomodulatory agents, and complementary therapies

    Particle Swarm Optimization with Reinforcement Learning for the Prediction of CpG Islands in the Human Genome

    Get PDF
    BACKGROUND: Regions with abundant GC nucleotides, a high CpG number, and a length greater than 200 bp in a genome are often referred to as CpG islands. These islands are usually located in the 5' end of genes. Recently, several algorithms for the prediction of CpG islands have been proposed. METHODOLOGY/PRINCIPAL FINDINGS: We propose here a new method called CPSORL to predict CpG islands, which consists of a complement particle swarm optimization algorithm combined with reinforcement learning to predict CpG islands more reliably. Several CpG island prediction tools equipped with the sliding window technique have been developed previously. However, the quality of the results seems to rely too much on the choices that are made for the window sizes, and thus these methods leave room for improvement. CONCLUSIONS/SIGNIFICANCE: Experimental results indicate that CPSORL provides results of a higher sensitivity and a higher correlation coefficient in all selected experimental contigs than the other methods it was compared to (CpGIS, CpGcluster, CpGProd and CpGPlot). A higher number of CpG islands were identified in chromosomes 21 and 22 of the human genome than with the other methods from the literature. CPSORL also achieved the highest coverage rate (3.4%). CPSORL is an application for identifying promoter and TSS regions associated with CpG islands in entire human genomic. When compared to CpGcluster, the islands predicted by CPSORL covered a larger region in the TSS (12.2%) and promoter (26.1%) region. If Alu sequences are considered, the islands predicted by CPSORL (Alu) covered a larger TSS (40.5%) and promoter (67.8%) region than CpGIS. Furthermore, CPSORL was used to verify that the average methylation density was 5.33% for CpG islands in the entire human genome

    Upregulation of Pd-L1 by Sars-Cov-2 Promotes Immune Evasion

    Get PDF
    Patients with severe COVID-19 often suffer from lymphopenia, which is linked to T-cell sequestration, cytokine storm, and mortality. However, it remains largely unknown how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces lymphopenia. Here, we studied the transcriptomic profile and epigenomic alterations involved in cytokine production by SARS-CoV-2-infected cells. We adopted a reverse time-order gene coexpression network approach to analyze time-series RNA-sequencing data, revealing epigenetic modifications at the late stage of viral egress. Furthermore, we identified SARS-CoV-2-activated nuclear factor-κB (NF-κB) and interferon regulatory factor 1 (IRF1) pathways contributing to viral infection and COVID-19 severity through epigenetic analysis of H3K4me3 chromatin immunoprecipitation sequencing. Cross-referencing our transcriptomic and epigenomic data sets revealed that coupling NF-κB and IRF1 pathways mediate programmed death ligand-1 (PD-L1) immunosuppressive programs. Interestingly, we observed higher PD-L1 expression in Omicron-infected cells than SARS-CoV-2 infected cells. Blocking PD-L1 at an early stage of virally-infected AAV-hACE2 mice significantly recovered lymphocyte counts and lowered inflammatory cytokine levels. Our findings indicate that targeting the SARS-CoV-2-mediated NF-κB and IRF1-PD-L1 axis may represent an alternative strategy to reduce COVID-19 severity

    Role of the CCAAT-Binding Protein NFY in SCA17 Pathogenesis

    Get PDF
    Spinocerebellar ataxia 17 (SCA17) is caused by expansion of the polyglutamine (polyQ) tract in human TATA-box binding protein (TBP) that is ubiquitously expressed in both central nervous system and peripheral tissues. The spectrum of SCA17 clinical presentation is broad. The precise pathogenic mechanism in SCA17 remains unclear. Previously proteomics study using a cellular model of SCA17 has revealed reduced expression of heat shock 70 kDa protein 5 (HSPA5) and heat shock 70 kDa protein 8 (HSPA8), suggesting that impaired protein folding may contribute to the cell dysfunction of SCA17 (Lee et al., 2009). In lymphoblastoid cells, HSPA5 and HSPA8 expression levels in cells with mutant TBP were also significantly lower than that of the control cells (Chen et al., 2010). As nuclear transcription factor Y (NFY) has been reported to regulate HSPA5 transcription, we focused on if NFY activity and HSPA5 expression in SCA17 cells are altered. Here, we show that TBP interacts with NFY subunit A (NFYA) in HEK-293 cells and NFYA incorporated into mutant TBP aggregates. In both HEK-293 and SH-SY5Y cells expressing TBP/Q61∼79, the level of soluble NFYA was significantly reduced. In vitro binding assay revealed that the interaction between TBP and NFYA is direct. HSPA5 luciferase reporter assay and endogenous HSPA5 expression analysis in NFYA cDNA and siRNA transfection cells further clarified the important role of NFYA in regulating HSPA5 transcription. In SCA17 cells, HSPA5 promoter activity was activated as a compensatory response before aggregate formation. NFYA dysfunction was indicated in SCA17 cells as HSPA5 promoter activity reduced along with TBP aggregate formation. Because essential roles of HSPA5 in protection from neuronal apoptosis have been shown in a mouse model, NFYA could be a target of mutant TBP in SCA17

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on six research projects and a list of publications and conference papers.Joint Services Electronics Program Contract DAAL03-89-C-0001National Science Foundation Grant ECS 86-20029Schlumberger- Doll ResearchU.S. Army Research Office Contract DAAL03 88-K-0057U.S. Navy - Office of Naval Research Contract N00014-90-J-1002National Aeronautics and Space Administration Grant NAGW-1617U.S. Navy - Office of Naval Research Grant N00014-89-J-1107National Aeronautics and Space Administration Grant NAGW-1272National Aeronautics and Space Administration Agreement 958461U.S. Army - Corps of Engineers Contract DACA39-87-K-0022U.S. Air Force - Electronic Systems Division Contract F19628-88-K-0013U.S. Navy - Office of Naval Research Grant N00014-89-J-1019Digital Equipment CorporationIBM CorporationU.S. Department of Transportation Contract DTRS-57-88-C-00078Defence Advanced Research Projects Agency Contract MDA972-90-C-002

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3 and reports on five research projects.U.S. Department of Transportation Contract DTRS-57-88-C-00078TTD13U.S. Department of Transportation Contract DTRS-57-88-C-00078TTD30Defense Advanced Research Projects Agency Contract MDA972-90-C-0021Digital Equipment CorporationIBM CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001Schlumberger-Doll ResearchU.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Grant 958461National Aeronautics and Space Administration Grant NAGW-1272U.S. Army Corp of Engineers Contract DACA39-87-K-0022U.S. Navy - Office of Naval Research Grant N00014-89-J-110

    Amyloid-Beta (Aβ) D7H Mutation Increases Oligomeric Aβ42 and Alters Properties of Aβ-Zinc/Copper Assemblies

    Get PDF
    Amyloid precursor protein (APP) mutations associated with familial Alzheimer's disease (AD) usually lead to increases in amyloid β-protein (Aβ) levels or aggregation. Here, we identified a novel APP mutation, located within the Aβ sequence (AβD7H), in a Taiwanese family with early onset AD and explored the pathogenicity of this mutation. Cellular and biochemical analysis reveal that this mutation increased Aβ production, Aβ42/40 ratio and prolonged Aβ42 oligomer state with higher neurotoxicity. Because the D7H mutant Aβ has an additional metal ion-coordinating residue, histidine, we speculate that this mutation may promote susceptibility of Aβ to ion. When co-incubated with Zn2+ or Cu2+, AβD7H aggregated into low molecular weight oligomers. Together, the D7H mutation could contribute to AD pathology through a “double punch” effect on elevating both Aβ production and oligomerization. Although the pathogenic nature of this mutation needs further confirmation, our findings suggest that the Aβ N-terminal region potentially modulates APP processing and Aβ aggregation, and further provides a genetic indication of the importance of Zn2+ and Cu2+ in the etiology of AD

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3, reports on four research projects and a list of publications.National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Agreement 958461National Aeronautics and Space Administration Grant NAGW-1272U.S. Army Corp of Engineers Contract DACA39-87-K-0022U.S. Navy - Office of Naval Research Grant N00014-89-J-1107U.S. Navy - Office of Naval Research Grant N00014-92-J-1616Digital Equipment CorporationJoint Services Electronics Program Contract DAAL03-92-C-0001U.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019U.S. Department of Transportation Agreement DTRS-57-88-C-00078TTD13U.S. Department of Transportation Agreement DTRS-57-88-C-00078TTD30U.S. Department of Transportation Agreement DTRS-57-92-C-00054TTD1DARPA/Consortium for Superconducting Electronics Contract MDA972-90-C-0021National Science Foundation Fellowship MIP 88-5876
    corecore