692 research outputs found
Higgs-Boson Production Associated with a Single Bottom Quark in Supersymmetric QCD
Due to the enhancement of the couplings between Higgs boson and bottom quarks
in the minimal sypersymmetric standard model (MSSM), the cross section of the
process pp(p\bar{p}) \to h^0b(h^0\bar{b})+X at hadron colliders can be
considerably enhanced. We investigated the production of Higgs boson associated
with a single high-p_T bottom quark via subprocess bg(\bar{b}g) \to
h^0b(h^0\bar{b}) at hadron colliders including the next-to-leading order (NLO)
QCD corrections in MSSM. We find that the NLO QCD correction in the MSSM
reaches 50%-70% at the LHC and 60%-85% at the Fermilab Tevatron in our chosen
parameter space.Comment: accepted by Phys. Rev.
Shadowing Effects on Vector Boson Production
We explore how nuclear modifications to the nucleon structure functions,
shadowing, affect massive gauge boson production in heavy ion collisions at
different impact parameters. We calculate the dependence of , and
production on rapidity and impact parameter to next-to-leading order in
Pb+Pb collisions at 5.5 TeV/nucleon to study quark shadowing at high . We
also compare our Pb+Pb results to the rapidity distributions at 14 TeV.Comment: 25 pages ReVTeX, 12 .eps figures, NLO included, version accepted for
publication in Physical Review
Pseudoscalar Higgs boson production associated with a single bottom quark at hadron colliders
We compute the complete next-to-leading order (NLO) SUSY-QCD corrections for
the associated production of a pseudoscalar Higgs boson with a bottom quark via
bottom-gluon fusion at the CERN Large Hadron Collider (LHC) and the Fermilab
Tevatron. We find that the NLO QCD correction in the MSSM reaches
at the LHC and at the Tevatron in our chosen parameter space
Baryon Tri-local Interpolating Fields
We systematically investigate tri-local (non-local) three-quark baryon fields
with U_L(2)*U_R(2) chiral symmetry, according to their Lorentz and isospin
(flavor) group representations. We note that they can also be called as
"nucleon wave functions" due to this full non-locality. We study their chiral
transformation properties and find all the possible chiral multiplets
consisting J=1/2 and J=3/2 baryon fields. We find that the axial coupling
constant |g_A| = 5/3 is only for nucleon fields belonging to the chiral
representation (1/2,1)+(1,1/2) which contains both nucleon fields and Delta
fields. Moreover, all the nucleon fields belonging to this representation have
|g_A| = 5/3.Comment: 8 pages, 3 tables, accepted by EPJ
Restoration of factorization for low hadron hadroproduction
We discuss the applicability of the factorization theorem to low-
hadron production in hadron-hadron collision in a simple toy model, which
involves only scalar particles and gluons. It has been shown that the
factorization for high- hadron hadroproduction is broken by soft gluons in
the Glauber region, which are exchanged among a transverse-momentum-dependent
(TMD) parton density and other subprocesses of the collision. We explain that
the contour of a loop momentum can be deformed away from the Glauber region at
low , so the above residual infrared divergence is factorized by means of
the standard eikonal approximation. The factorization is then restored in
the sense that a TMD parton density maintains its universality. Because the
resultant Glauber factor is independent of hadron flavors, experimental
constraints on its behavior are possible. The factorization can also be
restored for the transverse single-spin asymmetry in hadron-hadron collision at
low in a similar way, with the residual infrared divergence being
factorized into the same Glauber factor.Comment: 12 pages, 2 figures, version to appear in EPJ
Evading the CKM Hierarchy: Intrinsic Charm in B Decays
We show that the presence of intrinsic charm in the hadrons' light-cone wave
functions, even at a few percent level, provides new, competitive decay
mechanisms for B decays which are nominally CKM-suppressed. For example, the
weak decays of the B-meson to two-body exclusive states consisting of strange
plus light hadrons, such as B\to\pi K, are expected to be dominated by penguin
contributions since the tree-level b\to s u\bar u decay is CKM suppressed.
However, higher Fock states in the B wave function containing charm quark pairs
can mediate the decay via a CKM-favored b\to s c\bar c tree-level transition.
Such intrinsic charm contributions can be phenomenologically significant. Since
they mimic the amplitude structure of ``charming'' penguin contributions,
charming penguins need not be penguins at all.Comment: 28 pages, 6 figures, published version. References added, minor
change
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Search for DCC in 158A GeV Pb+Pb Collisions
A detailed analysis of the phase space distributions of charged particles and
photons have been carried out using two independent methods. The results
indicate the presence of nonstatistical fluctuations in localized regions of
phase space.Comment: Talk at the PANIC99 Conference, June 9-16, 199
Transverse Spin Structure of the Nucleon through Target Single Spin Asymmetry in Semi-Inclusive Deep-Inelastic Reaction at Jefferson Lab
Jefferson Lab (JLab) 12 GeV energy upgrade provides a golden opportunity to
perform precision studies of the transverse spin and
transverse-momentum-dependent structure in the valence quark region for both
the proton and the neutron. In this paper, we focus our discussion on a
recently approved experiment on the neutron as an example of the precision
studies planned at JLab. The new experiment will perform precision measurements
of target Single Spin Asymmetries (SSA) from semi-inclusive electro-production
of charged pions from a 40-cm long transversely polarized He target in
Deep-Inelastic-Scattering kinematics using 11 and 8.8 GeV electron beams. This
new coincidence experiment in Hall A will employ a newly proposed solenoid
spectrometer (SoLID). The large acceptance spectrometer and the high polarized
luminosity will provide precise 4-D (, , and ) data on the
Collins, Sivers, and pretzelocity asymmetries for the neutron through the
azimuthal angular dependence. The full 2 azimuthal angular coverage in the
lab is essential in controlling the systematic uncertainties. The results from
this experiment, when combined with the proton Collins asymmetry measurement
and the Collins fragmentation function determined from the ee collision
data, will allow for a quark flavor separation in order to achieve a
determination of the tensor charge of the d quark to a 10% accuracy. The
extracted Sivers and pretzelocity asymmetries will provide important
information to understand the correlations between the quark orbital angular
momentum and the nucleon spin and between the quark spin and nucleon spin.Comment: 23 pages, 13 figures, minor corrections, matches published versio
- …