6,560 research outputs found
Walks on Apollonian networks
We carry out comparative studies of random walks on deterministic Apollonian
networks (DANs) and random Apollonian networks (RANs). We perform computer
simulations for the mean first passage time, the average return time, the
mean-square displacement, and the network coverage for unrestricted random
walk. The diffusions both on DANs and RANs are proved to be sublinear. The
search efficiency for walks with various strategies and the influence of the
topology of underlying networks on the dynamics of walks are discussed.
Contrary to one's intuition, it is shown that the self-avoiding random walk,
which has been verified as an optimal strategy for searching on scale-free and
small-world networks, is not the best strategy for the DAN in the thermodynamic
limit.Comment: 5 pages, 4 figure
Probabilistic lane estimation for autonomous driving using basis curves
Lane estimation for autonomous driving can be formulated as a curve estimation problem, where local sensor data provides partial and noisy observations of spatial curves forming lane boundaries. The number of lanes to estimate are initially unknown and many observations may be outliers or false detections (due e.g. to shadows or non-boundary road paint). The challenges lie in detecting lanes when and where they exist, and updating lane estimates as new observations are made.
This paper describes an efficient probabilistic lane estimation algorithm based on a novel curve representation. The key advance is a principled mechanism to describe many similar curves as variations of a single basis curve. Locally observed road paint and curb features are then fused to detect and estimate all nearby travel lanes. The system handles roads with complex multi-lane geometries and makes no assumptions about the position and orientation of the vehicle with respect to the roadway.
We evaluate our algorithm using a ground truth dataset containing manually-labeled, fine-grained lane geometries for vehicle travel in two large and diverse datasets that include more than 300,000 images and 44 km of roadway. The results illustrate the capabilities of our algorithm for robust lane estimation in the face of challenging conditions and unknown roadways.United States. Defense Advanced Research Projects Agency (Urban Challenge, ARPA Order No. W369/00, Program Code DIRO, issued by DARPA/CMO under Contract No. HR0011-06-C-0149
Trends in worldwide nanotechnology patent applications: 1991 to 2008
Nanotechnology patent applications published during 1991â2008 have been examined using the âtitleâabstractâ keyword search on esp@cenet âworldwideâ database. The longitudinal evolution of the number of patent applications, their topics, and their respective patent families have been evaluated for 15 national patent offices covering 98% of the total global activity. The patent offices of the United States (USA), Peopleâs Republic of China (PRC), Japan, and South Korea have published the largest number of nanotechnology patent applications, and experienced significant but different growth rates after 2000. In most repositories, the largest numbers of nanotechnology patent applications originated from their own countries/regions, indicating a significant âhome advantage.â The top applicant institutions are from different sectors in different countries (e.g., from industry in the US and Canada patent offices, and from academe or government agencies at the PRC office). As compared to 2000, the year before the establishment of the US National Nanotechnology Initiative (NNI), numerous new invention topics appeared in 2008, in all 15 patent repositories. This is more pronounced in the USA and PRC. Patent families have increased among the 15 patent offices, particularly after 2005. Overlapping patent applications increased from none in 1991 to about 4% in 2000 and to about 27% in 2008. The largest share of equivalent nanotechnology patent applications (1,258) between two repositories was identified between the US and Japan patent offices
Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series
Notwithstanding the significant efforts to develop estimators of long-range
correlations (LRC) and to compare their performance, no clear consensus exists
on what is the best method and under which conditions. In addition, synthetic
tests suggest that the performance of LRC estimators varies when using
different generators of LRC time series. Here, we compare the performances of
four estimators [Fluctuation Analysis (FA), Detrended Fluctuation Analysis
(DFA), Backward Detrending Moving Average (BDMA), and centred Detrending Moving
Average (CDMA)]. We use three different generators [Fractional Gaussian Noises,
and two ways of generating Fractional Brownian Motions]. We find that CDMA has
the best performance and DFA is only slightly worse in some situations, while
FA performs the worst. In addition, CDMA and DFA are less sensitive to the
scaling range than FA. Hence, CDMA and DFA remain "The Methods of Choice" in
determining the Hurst index of time series.Comment: 6 pages (including 3 figures) + 3 supplementary figure
Predicting Transcriptional Activity of Multiple Site p53 Mutants Based on Hybrid Properties
As an important tumor suppressor protein, reactivate mutated p53 was found in many kinds of human cancers and that restoring active p53 would lead to tumor regression. In this work, we developed a new computational method to predict the transcriptional activity for one-, two-, three- and four-site p53 mutants, respectively. With the approach from the general form of pseudo amino acid composition, we used eight types of features to represent the mutation and then selected the optimal prediction features based on the maximum relevance, minimum redundancy, and incremental feature selection methods. The Mathew's correlation coefficients (MCC) obtained by using nearest neighbor algorithm and jackknife cross validation for one-, two-, three- and four-site p53 mutants were 0.678, 0.314, 0.705, and 0.907, respectively. It was revealed by the further optimal feature set analysis that the 2D (two-dimensional) structure features composed the largest part of the optimal feature set and maybe played the most important roles in all four types of p53 mutant active status prediction. It was also demonstrated by the optimal feature sets, especially those at the top level, that the 3D structure features, conservation, physicochemical and biochemical properties of amino acid near the mutation site, also played quite important roles for p53 mutant active status prediction. Our study has provided a new and promising approach for finding functionally important sites and the relevant features for in-depth study of p53 protein and its action mechanism
Long-term monitoring of the TeV emission from Mrk 421 with the ARGO-YBJ experiment
ARGO-YBJ is an air shower detector array with a fully covered layer of
resistive plate chambers. It is operated with a high duty cycle and a large
field of view. It continuously monitors the northern sky at energies above 0.3
TeV. In this paper, we report a long-term monitoring of Mrk 421 over the period
from 2007 November to 2010 February. This source was observed by the
satellite-borne experiments Rossi X-ray Timing Explorer and Swift in the X-ray
band. Mrk 421 was especially active in the first half of 2008. Many flares are
observed in both X-ray and gamma-ray bands simultaneously. The gamma-ray flux
observed by ARGO-YBJ has a clear correlation with the X-ray flux. No lag
between the X-ray and gamma-ray photons longer than 1 day is found. The
evolution of the spectral energy distribution is investigated by measuring
spectral indices at four different flux levels. Hardening of the spectra is
observed in both X-ray and gamma-ray bands. The gamma-ray flux increases
quadratically with the simultaneously measured X-ray flux. All these
observational results strongly favor the synchrotron self-Compton process as
the underlying radiative mechanism.Comment: 30 pages, 8 figure
Emergent Phenomena Induced by Spin-Orbit Coupling at Surfaces and Interfaces
Spin-orbit coupling (SOC) describes the relativistic interaction between the
spin and momentum degrees of freedom of electrons, and is central to the rich
phenomena observed in condensed matter systems. In recent years, new phases of
matter have emerged from the interplay between SOC and low dimensionality, such
as chiral spin textures and spin-polarized surface and interface states. These
low-dimensional SOC-based realizations are typically robust and can be
exploited at room temperature. Here we discuss SOC as a means of producing such
fundamentally new physical phenomena in thin films and heterostructures. We put
into context the technological promise of these material classes for developing
spin-based device applications at room temperature
Tag-Aware Recommender Systems: A State-of-the-art Survey
In the past decade, Social Tagging Systems have attracted increasing
attention from both physical and computer science communities. Besides the
underlying structure and dynamics of tagging systems, many efforts have been
addressed to unify tagging information to reveal user behaviors and
preferences, extract the latent semantic relations among items, make
recommendations, and so on. Specifically, this article summarizes recent
progress about tag-aware recommender systems, emphasizing on the contributions
from three mainstream perspectives and approaches: network-based methods,
tensor-based methods, and the topic-based methods. Finally, we outline some
other tag-related works and future challenges of tag-aware recommendation
algorithms.Comment: 19 pages, 3 figure
Hydrogen peroxide and glucose concentration measurement using optical fiber grating sensors with corrodible plasmonic nanocoatings
We propose and demonstrate hydrogen peroxide (H2O2) and glucose concentration measurements using a plasmonic optical fiber sensor. The sensor utilizes a tilted fiber Bragg grating (TFBG) written in standard single mode communication fiber. The fiber is over coated with an nm-scale film of silver that supports surface plasmon resonances (SPRs). Such a tilted grating SPR structure provides a high density of narrow spectral resonances (Q-factor about 105) that overlap with the broader absorption band of the surface plasmon waves in the silver film, thereby providing an accurate tool to measure small shifts of the plasmon resonance frequencies. The H2O2 to be detected acts as an oxidant to etch the silver film, which has the effect of gradually decreasing the SPR attenuation. The etching rate of the silver film shows a clear relationship with the H2O2 concentration so that monitoring the progressively increasing attenuation of a selected surface plasmon resonance over a few minutes enables us to measure the H2O2 concentration with a limit of detection of 0.2 ”M. Furthermore, the proposed method can be applied to the determination of glucose in human serum for a concentration range from 0 to 12 mM (within the physiological range of 3-8 mM) by monitoring the H2O2 produced by an enzymatic oxidation process. The sensor does not require accurate temperature control because of the inherent temperature insensitivity of TFBG devices referenced to the core mode resonance. A gold mirror coated on the fiber allows the sensor to work in reflection, which will facilitate the integration of the sensor with a hypodermic needle for in vitro measurements. The present study shows that Ag-coated TFBG-SPR can be applied as a promising type of sensing probe for optical detection of H2O2 and glucose detection in human serum
Search for Gamma Ray Bursts with the Argo-YBJ Detector in Scaler Mode
We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1-100
GeV in coincidence with the prompt emission detected by satellites using the
Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ)
air shower detector. Thanks to its mountain location (Yangbajing, Tibet, P.R.
China, 4300 m a.s.l.), active surface (about 6700 m**2 of Resistive Plate
Chambers), and large field of view (about 2 sr, limited only by the atmospheric
absorption), the ARGO-YBJ air shower detector is particularly suitable for the
detection of unpredictable and short duration events such as GRBs. The search
is carried out using the "single particle technique", i.e. counting all the
particles hitting the detector without measurement of the energy and arrival
direction of the primary gamma rays.
Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites
occurred within the field of view of ARGO-YBJ (zenith angle < 45 deg). It was
possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data
finding no statistically significant emission. With a lack of detected spectra
in this energy range fluence upper limits are profitable, especially when the
redshift is known and the correction for the extragalactic absorption can be
considered. The obtained fluence upper limits reach values as low as 10**{-5}
erg cm**{-2} in the 1-100 GeV energy region.
Besides this individual search for a higher energy counterpart, a statistical
study of the stack of all the GRBs both in time and in phase was made, looking
for a common feature in the GRB high energy emission. No significant signal has
been detected.Comment: accepted for publication in Ap
- âŠ