484 research outputs found

    Smoothed Dissipative Particle Dynamics model for mesoscopic multiphase flows in the presence of thermal fluctuations

    Full text link
    Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface

    AIF Downregulation and Its Interaction with STK3 in Renal Cell Carcinoma

    Get PDF
    Apoptosis-inducing factor (AIF) plays a crucial role in caspase-independent programmed cell death by triggering chromatin condensation and DNA fragmentation. Therefore, it might be involved in cell homeostasis and tumor development. In this study, we report significant AIF downregulation in the majority of renal cell carcinomas (RCC). In a group of RCC specimens, 84% (43 out of 51) had AIF downregulation by immunohistochemistry stain. Additional 10 kidney tumors, including an oxyphilic adenoma, also had significant AIF downregulation by Northern blot analysis. The mechanisms of the AIF downregulation included both AIF deletion and its promoter methylation. Forced expression of AIF in RCC cell lines induced massive apoptosis. Further analysis revealed that AIF interacted with STK3, a known regulator of apoptosis, and enhanced its phosphorylation at Thr180. These results suggest that AIF downregulation is a common event in kidney tumor development. AIF loss may lead to decreased STK3 activity, defective apoptosis and malignant transformation

    Green Fluorescent Protein GFP-Chromophore-Based Probe for the Detection of Mitochondrial Viscosity in Living Cells

    Get PDF
    Viscosity is a pivotal factor for indicating the dysfunction of the mitochondria. To date, most of the fluorescent probes developed for mitochondrial viscosity have been designed using BODIPY, hemicyanine, or pyridine-based molecular rotors as part of the core structure. Our aim with this research was to extend the range of suitable fluorophores available for the construction of such fluorescent molecular rotors for evaluating the viscosity of mitocondria. Herein, we have developed a green fluorescent protein (GFP)-chromophore-based fluorescent probe (MIT-V) for the detection of mitochondrial viscosity in live cells. MIT-V exhibited a high sensitivity toward viscosity (from 7.9 cP to 438.4 cP). The "off-on"sensing mechanism of MIT-V was ascribed to the restricted rotation of single bonds and excited-state C= C double bonds of MIT-V. Cell studies indicated that MIT-V targets the mitochondria and that it was able to monitor real-time changes in the viscosity of live HeLa cell mitochondria. Therefore, we propose that MIT-V can be used as an effective chemosensor for the real-time imaging of mitochondrial viscosity in live cells. Our results clearly demonstrate the utility of such GFP-chromophore-based derivatives for the development of viscosity-sensitive systems.</p

    Versatile Ratiometric Fluorescent Probe Based on the Two-Isophorone Fluorophore for Sensing Nitroxyl

    Get PDF
    Nitroxyl (HNO) is closely linked with numerous biological processes. Fluorescent probes provide a visual tool for determining HNO. Due to fluorescence quenching by HNO-responsive recognition groups, most of the current fluorescent probes exhibit an "off-on"fluorescence response. As such, the single fluorescence signal of these probes is easily affected by external factors such as the microenvironment, sensor concentration, and photobleaching. Herein, we have developed a ratiometric fluorescent probe (CHT-P) based on our previously developed two-isophorone fluorophore. CHT-P could be used to determine HNO through ratiometric signal readouts with high selectivity and sensitivity, ensuring the accurate quantitative detection of HNO. Additionally, the probe exhibited low cytotoxicity, was cell permeable, and could be used for ratiometric imaging of HNO in cells. Finally, CHT-P-coated portable test strips were used to determine HNO using the solid-state fluorescence signal readout. </p

    Rethinking Memory and Communication Cost for Efficient Large Language Model Training

    Full text link
    Recently, various distributed strategies for large language model training have been proposed. However, these methods provided limited solutions for the trade-off between memory consumption and communication cost. In this paper, we rethink the impact of memory consumption and communication costs on the training speed of large language models, and propose a memory-communication balanced strategy set Partial Redundancy Optimizer (PaRO). PaRO provides comprehensive options which reduces the amount and frequency of inter-group communication with minor memory redundancy by fine-grained sharding strategy, thereby improving the training efficiency in various training scenarios. Additionally, we propose a Hierarchical Overlapping Ring (HO-Ring) communication topology to enhance communication efficiency between nodes or across switches in large language model training. Our experiments demonstrate that PaRO significantly improves training throughput by 1.19x-2.50x compared to the SOTA method and achieves a near-linear scalability. The HO-Ring algorithm improves communication efficiency by 36.5% compared to the traditional Ring algorithm

    Galectin-3 Modulates Th17 Responses by Regulating Dendritic Cell Cytokines

    Get PDF
    Galectin-3 is a β-galactoside–binding animal lectin with diverse functions, including regulation of T helper (Th) 1 and Th2 responses. Current data indicate that galectin-3 expressed in dendritic cells (DCs) may be contributory. Th17 cells have emerged as critical inducers of tissue inflammation in autoimmune disease and important mediators of host defense against fungal pathogens, although little is known about galectin-3 involvement in Th17 development. We investigated the role of galectin-3 in the induction of Th17 immunity in galectin-3–deficient (gal3−/−) and gal3+/+ mouse bone marrow–derived DCs. We demonstrate that intracellular galectin-3 negatively regulates Th17 polarization in response to the dectin-1 agonist curdlan (a β-glucan present on the cell wall of fungal species) and lipopolysaccharide, agents that prime DCs for Th17 differentiation. On activation of dectin-1, gal3−/− DCs secreted higher levels of the Th17-axis cytokine IL-23 compared with gal3+/+ DCs and contained higher levels of activated c-Rel, an NF-κB subunit that promotes IL-23 expression. Levels of active Raf-1, a kinase that participates in downstream inhibition of c-Rel binding to the IL23A promoter, were impaired in gal3−/− DCs. Modulation of Th17 by galectin-3 in DCs also occurred in vivo because adoptive transfer of gal3−/− DCs exposed to Candida albicans conferred higher Th17 responses and protection against fungal infection. We conclude that galectin-3 suppresses Th17 responses by regulating DC cytokine production

    Functional roles of Arabidopsis CKRC2/YUCCA8 gene and the involvement of PIF4 in the regulation of auxin biosynthesis by cytokinin

    Get PDF
    Auxin and cytokinin (CK) are both important hormones involved in many aspects of plant growth and development. However, the details of auxin biosynthesis and the interaction between auxin and CK are still unclear. Isolation and characterization of an auxin deficient mutant cytokinin induced root curling 2 (ckrc2) in this work reveal that CKRC2 encodes a previously identified member of YUCCA (YUC) flavin monooxygenase-like proteins (YUC8). Our results show that, like other YUCs, CKRC2/YUC8 is a rate-limiting enzyme for catalyzing the conversion of indole-3-pyruvic acid (IPyA) to indole-3-acetic acid (IAA), acting downstream of CKRC1/TAA1 in the IPyA pathway. Here we show that the transcription of both CKRC1/TAA and CKRC2/YUC8 can be induced by CK and that the phytochrome-interacting factor 4 (PIF4) is required for this upregulation. Transcription of PIF4 itself is induced by CK via the AHKs-ARR1/12 signalling pathway. These results indicate that PIF4 plays an essential role in mediating the regulatory effect of CK on the transcriptions of CKRC1 and CKRC2 genes in the IPyA pathway of auxin biosynthesis

    Ferromagnetic-antiferromagnetic coexisting ground states and exchange bias effects in MnBi4Te7\bf{MnBi_4Te_7} and MnBi6Te10\bf{MnBi_6Te_{10}}

    Full text link
    Natural superlattice structures (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2,...), in which magnetic MnBi2Te4\rm{MnBi_2Te_4} layers are separated by nonmagnetic Bi2Te3\rm{Bi_2Te_3} layers, hold band topology, magnetism and reduced interlayer coupling, providing a promising platform for the realization of exotic topological quantum states. However, their magnetism in the two-dimensional limit, which is crucial for further exploration of quantum phenomena, remains elusive. Here, complex ferromagnetic (FM)-antiferromagnetic (AFM) coexisting ground states that persist up to the 2-septuple layers (SLs) limit are observed and comprehensively investigated in MnBi4Te7\rm{MnBi_4Te_7} (nn = 1) and MnBi6Te10\rm{MnBi_6Te_{10}} (nn = 2). The ubiquitous Mn-Bi site mixing modifies or even changes the sign of the subtle inter-SL magnetic interactions, yielding a spatially inhomogeneous interlayer coupling. Further, a tunable exchange bias effect is observed in (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2), arising from the coupling between the FM and AFM components in the ground state. Our work highlights a new approach toward the fine-tuning of magnetism and paves the way for further study of quantum phenomena in (MnBi2Te4)(Bi2Te3)\rm{(MnBi_2Te_4)(Bi_2Te_3)}n_n (nn = 1, 2,...) as well as their magnetic applications.Comment: 9 pages, 4 figure
    • …
    corecore