2 research outputs found

    Molecular characteristics and pathogenicity of a novel chicken astrovirus variant

    No full text
    Abstract It is well-established that the genetic diversity, regional prevalence, and broad host range of astroviruses significantly impact the poultry industry. In July 2022, a small-scale commercial broiler farm in China reported cases of growth retardation and a 3% mortality rate. From chickens displaying proventriculitis and pancreatitis, three chicken astroviruses (CAstV) isolates were obtained and named SDAU2022-1-3. Complete genomic sequencing and analysis revealed the unique characteristics of these isolates from known CAstV strains in ORF1a, ORF1b, and ORF2 genes, characterized by an unusually high variability. Analysis of amino acid mutations in ORF1a, ORF1b, and ORF2 indicated that the accumulation of these mutations played a pivotal role in the emergence of the variant strain. Inoculation experiments demonstrated that affected chickens exhibited liver and kidney enlargement, localized proventricular hemorrhage, and a dark reddish-brown appearance in about two-thirds of the pancreas. Histopathological examination unveiled hepatic lymphocytic infiltration, renal tubular epithelial cell swelling, along with lymphocytic proventriculitis and pancreatitis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis indicated viremia and viral shedding at 3 days post-infection (dpi). The proventriculus displayed the highest viral loads, followed by the liver, kidney, duodenum, and pancreas. Liver parameters (AST and ALT) and kidney parameters (UA and UN) demonstrated mild damage consistent with earlier findings. While the possibility of new mutations in the ORF2 gene of CAstV causing proventriculitis and pancreatitis warrants further investigation, these findings deepen our comprehension of CAstV’s pathogenicity in chickens. Additionally, they serve as valuable references for subsequent research endeavors

    Dynamic Co-evolution and Interaction of Avian Leukosis Virus Genetic Variants and Host Immune Responses

    No full text
    Subgroup J avian leukosis virus (ALV-J), a typical retrovirus, is characterized of existence of a cloud of diverse variants and considerable genetic diversity. Previous studies describing the evolutionary dynamics of ALV-J genetic variants mainly focused on the early infection period or few randomly selected clones. Here, we inoculated 30 specific-pathogen-free chickens with the same founder ALV-J stock of known genetic background. Six (three antibody positive and three antibody negative) chickens were selected among 15 chickens with viremia. Viruses were serially isolated in 36 weeks and then sequenced using MiSeq high-throughput sequencing platform. This produced the largest ALV-J dataset to date, composed of more than three million clean reads. Our results showed that host humoral immunity could greatly enhance the genetic diversity of ALV-J genetic variants. In particular, selection pressures promoted a dynamic proportional changes in ALV-J genetic variants frequency. Cross-neutralization experiment showed that along with the change of the dominant variant, the antibody titers specific to infectious clones corresponding to the most dominant variants in weeks 12 and 28 have also changed significantly in sera collected in weeks 16 and 32. In contrast, no shift of dominant variant was observed in antibody-negative chickens. Moreover, we identified a novel hypervariable region in the gp85 gene. Our study reveals the interaction between ALV-J and the host, which could facilitate the development of vaccines and antiviral drugs
    corecore