57 research outputs found

    On combining temporal scaling and quality scaling for streaming MPEG

    Full text link
    Temporal Scaling and Quality Scaling are both widely-used techniques to reduce the bitrate of streaming video. How-ever, combinations and comparisons of Temporal and Qual-ity Scaling have not been systematically studied. This re-search extends previous work to provide a model for combin-ing Temporal and Quality Scaling, and uses an optimization algorithm to provide a systematic analysis of their combina-tion over a range of network conditions and video content. Analytic experiments show: 1) Quality Scaling typically per-forms better than Temporal Scaling, with performance dif-ferences correlated with the motion characteristics of the video. In fact, when the network capacity is moderate and the loss rate is low, Quality Scaling performs nearly as well as the optimal combination of Quality and Temporal Scal-ing; 2) when the network capacity is low and the packet loss rate is high, Quality Scaling alone is ineffective, but a combination of Quality and Temporal Scaling can provide reasonable video quality; 3) adjusting the amount of For-ward Error Correction (FEC) provides significantly better performance than video streaming without FEC or video streaming with a fixed amount of FEC. 1

    Identification of alternative splicing associated with clinical features: from pan-cancers to genitourinary tumors

    Get PDF
    BackgroundAlternative splicing events (ASEs) are vital causes of tumor heterogeneity in genitourinary tumors and many other cancers. However, the clinicopathological relevance of ASEs in cancers has not yet been comprehensively characterized.MethodsBy analyzing splicing data from the TCGA SpliceSeq database and phenotype data for all TCGA samples from the UCSC Xena database, we identified differential clinical feature-related ASEs in 33 tumors. CIBERSORT immune cell infiltration data from the TIMER2.0 database were used for differential clinical feature-related immune cell infiltration analysis. Gene function enrichment analysis was used to analyze the gene function of ASEs related to different clinical features in tumors. To reveal the regulatory mechanisms of ASEs, we integrated race-related ASEs and splicing quantitative trait loci (sQTLs) data in kidney renal clear cell carcinoma (KIRC) to comprehensively assess the impact of SNPs on ASEs. In addition, we predicted regulatory RNA binding proteins in bladder urothelial carcinoma (BLCA) based on the enrichment of motifs around alternative exons for ASEs.ResultsAlternative splicing differences were systematically analyzed between different groups of 58 clinical features in 33 cancers, and 30 clinical features in 24 cancer types were identified to be associated with more than 50 ASEs individually. The types of immune cell infiltration were found to be significantly different between subgroups of primary diagnosis and disease type. After integrating ASEs with sQTLs data, we found that 63 (58.9%) of the race-related ASEs were significantly SNP-correlated ASEs in KIRC. Gene function enrichment analyses showed that metastasis-related ASEs in KIRC mainly enriched Rho GTPase signaling pathways. Among those ASEs associated with metastasis, alternative splicing of GIT2 and TUBB3 might play key roles in tumor metastasis in KIRC patients. Finally, we identified several RNA binding proteins such as PCBP2, SNRNP70, and HuR, which might contribute to splicing differences between different groups of neoplasm grade in BLCA.ConclusionWe demonstrated the significant clinical relevance of ASEs in multiple cancer types. Furthermore, we identified and validated alternative splicing of TUBB3 and RNA binding proteins such as PCBP2 as critical regulators in the progression of urogenital cancers

    ARMOR - Adjusting Repair and Media Scaling with Operations Research for Streaming Video

    Get PDF
    Streaming multimedia quality is impacted by two main factors: capacity constraint and packet loss. To match the capacity constraint while preserving real-time playout, media scaling can be used to discard the encoded multimedia content that has the least impact on perceived video quality. To limit the impact of lost packets, repair techniques, e.g. forward error correction (FEC), can be used to repair frames damaged by packet loss. However, adding data to facilitate repair requires further reduction of the original multimedia data, making the decision of how much repair data to use of critical importance. Assuming a limited network capacity and the availability of an estimate of the current packet loss rate along a flow path, selecting the best distribution of FEC packets for video frames with inherent interframe encoding dependencies can be cast as a constraint optimization problem that attempts to optimize the quality of the video stream. This thesis presents an Adjusting Repair and Media scaling with Operations Research (ARMOR) system. An analytical model is derived for streaming video with FEC and media scaling. Given parameters to represent network loss as well as video frame types and sizes, if the number of FEC packets per video frame type and media scaling pattern is specified, the model can estimate the video quality at the receiver side. The model is then used in an operations research algorithm to adjust the FEC strength and media scaling level to yield the best quality under the capacity constraint. Four different combinations of FEC type and media scaling method are studied: Media Independent FEC with Temporal Scaling (MITS), Media Independent FEC with Quality Scaling (MIQS), Media Independent FEC with Temporal and Quality Scaling (MITQS), and Media Dependent FEC with Quality Scaling (MDQS). The analytical experiments show: 1) adjusting FEC always achieves a higher video quality than streaming video without FEC or with a fixed amount of FEC; 2) Quality Scaling usually works better than Temporal Scaling; and 3) Media Dependent FEC (MDFEC) is typically less effective than Media Independent FEC (MIFEC). A user study is presented with results from 74 participants analysis shows that the ARMOR model can accurately estimate users¡¯perceptual quality. Well-designed simulations and a realistic system implementation suggests the ARMOR system can practically improve the quality of streaming video

    Influence of front slope gradient and the angle between tunnel and slope on stability of tunnel portal

    No full text
    Shallow buried and unsymmetrically loaded tunnel is the most common type of mountain tunnel portal. Currently, most of the studies mainly focus on the stability of side slope, while the investigation on the deformation of the front slope after tunnel excavation is relatively less. In this paper, the influence of front slope gradient and the angle between tunnel and slope on stability of tunnel portal was analyzed by FLAC3D. The results show that: When the front slope angle is greater than 40°, the slope deformation caused by tunnel excavation is larger with the increase of slope angle. In order to ensure the safety of construction, we should not only pay attention to the treatment of the front slope before the tunnel excavation, but also pay attention to the monitoring of the front slope deformation during the excavation of the tunnel portal section. And the most suitable entry angle between tunnel axis and the front slope is 0°, which can control the vertical displacement of relatively large deformation. The research conclusions can provide some reference for the excavation and support design of mountain tunnel portal
    corecore