22 research outputs found

    Spatial Downscaling of Gross Primary Productivity Using Topographic and Vegetation Heterogeneity Information: A Case Study in the Gongga Mountain Region of China

    No full text
    Due to the spatial heterogeneity of land surfaces, downscaling is an important issue in the development of carbon cycle models when evaluating the role of ecosystems in the global carbon cycle. In this study, a downscaling algorithm was developed to model gross primary productivity (GPP) at 500 m in a time series over rugged terrain, which considered the effects of spatial heterogeneity on carbon flux simulations. This work was carried out for a mountainous area with an altitude ranging from 2606 to 4744 m over the Gongga Mountain (Sichuan Province, China). In addition, the Moderate Resolution Imaging Spectroradiometer (MODIS) GPP product at 1 km served as the primary dataset for the downscaling algorithm, and the 500 m MODIS GPP product was used as the reference dataset to evaluate the downscaled GPP results. Moreover, in order to illustrate the advantages and benefits of the proposed downscaling method, the downscaled results in this work, along with ordinary kriging downscaled results, spline downscaled results and inverse distance weighted (IDW) downscaled results, were compared to the MODIS GPP at 500 m. The results showed that (1) the GPP difference between the 500 m MODIS GPP and the proposed downscaled GPP results was primarily in the range of [−1, 1], showing that both vegetation heterogeneity factors (i.e., LAI) and topographic factors (i.e., altitude, slope and aspect) were useful for GPP downscaling; (2) the proposed downscaled results (R2 = 0.89, RMSE = 1.03) had a stronger consistency with the 500 m MODIS GPP than those of the ordinary kriging downscaled results (R2 = 0.43, RMSE = 1.36), the spline downscaled results (R2 = 0.40, RMSE = 1.50) and the IDW downscaled results (R2 = 0.42, RMSE = 1.10) for all Julian days; and (3) the inconsistency between MODIS GPP at 500 m and 1 km increased with the increase in altitude and slope. The proposed downscaling algorithm could provide a reference when considering the effects of spatial heterogeneity on carbon flux simulations and retrieving other fine resolution ecological-physiology parameters (e.g., net primary productivity and evaporation) over topographically complex terrains

    Integration of C<sub>4</sub>-specific PPDK gene of maize to C<sub>3</sub> rice and its characteristics in relation to photosynthesis

    No full text
    Pyruvate orthophosphate dikinase (PPDK) is a key enzyme in photosynthesis in some plants that exploit the C<sub>4</sub> photosynthetic pathway for the fixation of CO<sub>2</sub>. The C<sub>4</sub>-specific PPDK encoding pyruvate orthophosphate dikinase was introduced into C<sub>3</sub> plant, a rice (Oryza sativa L. cv. indica IR64) mediated by biolistic and Agrobacterium transformation. The C4-PPDK gene of maize was integrated to indica IR64 with polymerase chain reaction (PCR)-Southern blotting. The total nitrogen of flag leaves of transgenic IR64 was analyzed with Kjeldahl method for quantitative determination of nitrogen, indicating that the total nitrogen of flag leaves of most transgenic IR64 was higher than that of non-transgenic control IR64 formants in the greenhouse. The maximum value of total nitrogen of flag leaves was 3.61% among transgenic IR64 plants, 1.07% higher than that of non-transgenic control IR64 formants. The total nitrogen of flag leaves of transgenic IR64 was increased by 42.1%. The factors for yield of transgenic IR64 plants were analyzed, indicating there was a greater difference in yield-forming factors among transgenic IR64 plants in the greenhouse, i.e. dried plant weight, harvested index and so on. Thus, it could help rice breeders select different materials for breeding

    Spatially and Temporally Continuous Leaf Area Index Mapping for Crops through Assimilation of Multi-resolution Satellite Data

    No full text
    As a key parameter that represents the structural characteristics and biophysical changes of crop canopy, the leaf area index (LAI) plays a significant role in monitoring crop growth and mapping yield. A considerable amount of farmland is dispersed with strong spatial heterogeneity. The existing time series satellite LAI products fail to capture spatial distributions and growth changes of crops due to coarse spatial resolutions and spatio-temporal discontinuities. Therefore, it becomes crucial for fine resolution LAI mapping in time series over crop areas. A two-stage data assimilation scheme was developed for dense time series LAI mapping in this study. A LAI dynamic model was first constructed using multi-year MODIS LAI data. This model coupled with the PROSAIL radiative transfer model, and MOD09A1 reflectance data were used to retrieve temporal LAI profiles at the 500 m resolution with the assistance of the very fast simulated annealing (VFSA) algorithm. Then, the LAI dynamics at the 500 m scale were incorporated as prior information into the Landsat 8 OLI reflectance data for time series LAI mapping at the 30 m resolution. Finally, the spatio-temporal continuities and retrieval accuracies of assimilated LAI values were assessed at the 500 m and 30 m resolutions respectively, using the MODIS LAI product, fine resolution LAI reference map and field measurements. The results indicated that the assimilated the LAI estimations at the 500 m scale effectively eliminated the spatio-temporal discontinuities of the MODIS LAI product and displayed reasonable temporal profiles and spatial integrity of LAI. Moreover, the 30 m resolution LAI retrievals showed more abundant spatial details and reasonable temporal profiles than the counterparts at the 500 m scale. The determination coefficient R2 between the estimated and field LAI values was 0.76 with a root mean square error (RMSE) value of 0.71 at the 30 m scale. The developed method not only improves the spatio-temporal continuities of the LAI at the 500 m scale, but also obtains 30 m resolution LAI maps with fine spatial and temporal consistencies, which can be expected to meet the needs of analysis on crop dynamic changes and yield mapping in fragmented and highly heterogeneous areas

    Genome-Wide Association Study Reveals the QTLs for Seed Storability in World Rice Core Collections

    No full text
    Seed storability is a main agronomically important trait to assure storage safety of grain and seeds in rice. Although many quantitative trait loci (QTLs) and associated genes for rice seed storability have been identified, the detailed genetic mechanisms of seed storability remain unclear in rice. In this study, a genome-wide association study (GWAS) was performed in 456 diverse rice core collections from the 3K rice genome. We discovered the new nine QTLs designated as qSS1-1, qSS1-2, qSS2-1, qSS3-1, qSS5-1, qSS5-2, qSS7-1, qSS8-1, and qSS11-1. According to the analysis of the new nine QTLs, our results could well explain the reason why seed storability of indica subspecies was superior to japonica subspecies in rice. Among them, qSS1-2 and qSS8-1 were potentially co-localized with a known associated qSS1/OsGH3-2 and OsPIMT1, respectively. Our results also suggest that pyramiding breeding of superior alleles of these associated genes will lead to new varieties with improved seed storability in the future

    Estimation of Vegetation Leaf-Area-Index Dynamics from Multiple Satellite Products through Deep-Learning Method

    No full text
    A high-quality leaf-area index (LAI) is important for land surface process modeling and vegetation growth monitoring. Although multiple satellite LAI products have been generated, they usually show spatio-temporal discontinuities and are sometimes inconsistent with vegetation growth patterns. A deep-learning model was proposed to retrieve time-series LAIs from multiple satellite data in this paper. The fusion of three global LAI products (i.e., VIIRS, GLASS, and MODIS LAI) was first carried out through a double logistic function (DLF). Then, the DLF LAI, together with MODIS reflectance (MOD09A1) data, served as the training samples of the deep-learning long short-term memory (LSTM) model for the sequential LAI estimations. In addition, the LSTM models trained by a single LAI product were considered as indirect references for the further evaluation of our proposed approach. The validation results showed that our proposed LSTMfusion LAI provided the best performance (R2 = 0.83, RMSE = 0.82) when compared to LSTMGLASS (R2 = 0.79, RMSE = 0.93), LSTMMODIS (R2 = 0.78, RMSE = 1.25), LSTMVIIRS (R2 = 0.70, RMSE = 0.94), GLASS (R2 = 0.68, RMSE = 1.05), MODIS (R2 = 0.26, RMSE = 1.75), VIIRS (R2 = 0.44, RMSE = 1.37) and DLF LAI (R2 = 0.67, RMSE = 0.98). A temporal comparison among LSTMfusion and three LAI products demonstrated that the LSTMfusion model efficiently generated a time-series LAI that was smoother and more continuous than the VIIRS and MODIS LAIs. At the crop peak growth stage, the LSTMfusion LAI values were closer to the reference maps than the GLASS LAI. Furthermore, our proposed method was proved to be effective and robust in maintaining the spatio-temporal continuity of the LAI when noisy reflectance data were used as the LSTM input. These findings highlighted that the DLF method helped to enhance the quality of the original satellite products, and the LSTM model trained by the coupled satellite products can provide reliable and robust estimations of the time-series LAI

    Estimation of Vegetation Leaf-Area-Index Dynamics from Multiple Satellite Products through Deep-Learning Method

    No full text
    A high-quality leaf-area index (LAI) is important for land surface process modeling and vegetation growth monitoring. Although multiple satellite LAI products have been generated, they usually show spatio-temporal discontinuities and are sometimes inconsistent with vegetation growth patterns. A deep-learning model was proposed to retrieve time-series LAIs from multiple satellite data in this paper. The fusion of three global LAI products (i.e., VIIRS, GLASS, and MODIS LAI) was first carried out through a double logistic function (DLF). Then, the DLF LAI, together with MODIS reflectance (MOD09A1) data, served as the training samples of the deep-learning long short-term memory (LSTM) model for the sequential LAI estimations. In addition, the LSTM models trained by a single LAI product were considered as indirect references for the further evaluation of our proposed approach. The validation results showed that our proposed LSTMfusion LAI provided the best performance (R2 = 0.83, RMSE = 0.82) when compared to LSTMGLASS (R2 = 0.79, RMSE = 0.93), LSTMMODIS (R2 = 0.78, RMSE = 1.25), LSTMVIIRS (R2 = 0.70, RMSE = 0.94), GLASS (R2 = 0.68, RMSE = 1.05), MODIS (R2 = 0.26, RMSE = 1.75), VIIRS (R2 = 0.44, RMSE = 1.37) and DLF LAI (R2 = 0.67, RMSE = 0.98). A temporal comparison among LSTMfusion and three LAI products demonstrated that the LSTMfusion model efficiently generated a time-series LAI that was smoother and more continuous than the VIIRS and MODIS LAIs. At the crop peak growth stage, the LSTMfusion LAI values were closer to the reference maps than the GLASS LAI. Furthermore, our proposed method was proved to be effective and robust in maintaining the spatio-temporal continuity of the LAI when noisy reflectance data were used as the LSTM input. These findings highlighted that the DLF method helped to enhance the quality of the original satellite products, and the LSTM model trained by the coupled satellite products can provide reliable and robust estimations of the time-series LAI
    corecore