803 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Polyketides from the Halotolerant Fungus Myrothecium sp. GS-17

    Get PDF
    Two new polyketides, myrothecol (1) and 5-hydroxy-3-methyl-4-(1- hydroxylethyl)-furan-2(5H)-one (2), were isolated from the fermentation broth of the halotolerant fungus Myrothecium sp. GS-17 along with three known compounds, 5-hydroxyl-3-[(1S)-1-hydroxyethyl]-4-methylfuran-2(5H)-one (3), 3,5-dimethyl-4- hydroxylmethyl-5-methoxyfuran-2(5H)-one (4), and 3,5-dimethyl-4-hydroxymethyl-5- hydroxyfuran-2(5H)-one (5). Compound 1 is the first natural occurring polyketide with a unique furylisobenzofuran skeleton. The structures of these compounds were established via extensive spectroscopic analyses including 1D-, 2D-NMR, HRESI-MS, and crystal X-ray diffraction analysis

    A Low-Power Passive UHF Tag With High-Precision Temperature Sensor for Human Body Application

    Get PDF
    Radio frequency identification (RFID) tags are widely used in various electronic devices due to their low cost, simple structure, and convenient data reading. This topic aims to study the key technologies of ultra-high frequency (UHF) RFID tags and high-precision temperature sensors, and how to reduce the power consumption of the temperature sensor and the overall circuits while maintaining minimal loss of performance. Combined with the biomedicine, an innovative high-precision human UHF RFID chip for body temperature monitoring is designed. In this study, a ring oscillator whose output frequency is linearly related to temperature is designed and proposed as a temperature-sensing circuit by innovatively combining auxiliary calibration technology. Then, a binary counter is used to count the pulses, and the temperature is ultimately calculated. This topic designed a relaxation oscillator independent of voltage and current. The various types of resistors were used to offset the temperature deviation. A current mirror array calibration circuit is used to calibrate the process corner deviation of the clock circuit with a self-calibration algorithm. This study mainly contributes to reducing power consumption and improving accuracy. The total power consumption of the RF/analog front-end and temperature sensor is 7.65µW. The measurement error of the temperature sensor in the range of 0 to 60◦C is less than ±0.1%, and the accuracy of the output frequency of the clock circuit is ±2.5%

    Evolutional selection of a combinatorial phage library displaying randomly-rearranged various single domains of immunoglobulin (Ig)-binding proteins (IBPs) with four kinds of Ig molecules

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein A, protein G and protein L are three well-defined immunoglobulin (Ig)-binding proteins (IBPs), which show affinity for specific sites on Ig of mammalian hosts. Although the precise functions of these molecules are not fully understood, it is thought that they play an important role in pathogenicity of bacteria. The single domains of protein A, protein G and protein L were all demonstrated to have function to bind to Ig. Whether combinations of Ig-binding domains of various IBPs could exhibit useful novel binding is interesting.</p> <p>Results</p> <p>We used a combinatorial phage library which displayed randomly-rearranged various-peptide-linked molecules of D and A domains of protein A, designated PA(D) and PA(A) respectively, B2 domain of protein G (PG) and B3 domain of protein L (PL) for affinity selection with human IgG (hIgG), human IgM (hIgM), human IgA (hIgA) and recombinant hIgG1-Fc as bait respectively. Two kinds of novel combinatorial molecules with characteristic structure of PA(A)-PG and PA(A)-PL were obtained in hIgG (hIgG1-Fc) and hIgM (hIgA) post-selection populations respectively. In addition, the linking peptides among all PA(A)-PG and PA(A)-PL structures was strongly selected, and showed interestingly divergent and convergent distribution. The phage binding assays and competitive inhibition experiments demonstrated that PA(A)-PG and PA(A)-PL combinations possess comparable binding advantages with hIgG/hIgG1-Fc and hIgM/hIgA respectively.</p> <p>Conclusion</p> <p>In this work, a combinatorial phage library displaying Ig-binding domains of protein A, protein G, or protein L joined by various random linking peptides was used to conducted evolutional selection <it>in vitro</it> with four kinds of Ig molecules. Two kinds of novel combinations of Ig-binding domains, PA(A)-PG and PA(A)-PL, were obtained, and demonstrate the novel Ig binding properties.</p

    Measurement-device-independent quantum key distribution over untrustful metropolitan network

    Full text link
    Quantum cryptography holds the promise to establish an information-theoretically secure global network. All field tests of metropolitan-scale quantum networks to date are based on trusted relays. The security critically relies on the accountability of the trusted relays, which will break down if the relay is dishonest or compromised. Here, we construct a measurement-device-independent quantum key distribution (MDIQKD) network in a star topology over a 200 square kilometers metropolitan area, which is secure against untrustful relays and against all detection attacks. In the field test, our system continuously runs through one week with a secure key rate ten times larger than previous result. Our results demonstrate that the MDIQKD network, combining the best of both worlds --- security and practicality, constitutes an appealing solution to secure metropolitan communications.Comment: 17 pages, 4 figure

    Integrated application of uniform design and least-squares support vector machines to transfection optimization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transfection in mammalian cells based on liposome presents great challenge for biological professionals. To protect themselves from exogenous insults, mammalian cells tend to manifest poor transfection efficiency. In order to gain high efficiency, we have to optimize several conditions of transfection, such as amount of liposome, amount of plasmid, and cell density at transfection. However, this process may be time-consuming and energy-consuming. Fortunately, several mathematical methods, developed in the past decades, may facilitate the resolution of this issue. This study investigates the possibility of optimizing transfection efficiency by using a method referred to as least-squares support vector machine, which requires only a few experiments and maintains fairly high accuracy.</p> <p>Results</p> <p>A protocol consists of 15 experiments was performed according to the principle of uniform design. In this protocol, amount of liposome, amount of plasmid, and the number of seeded cells 24 h before transfection were set as independent variables and transfection efficiency was set as dependent variable. A model was deduced from independent variables and their respective dependent variable. Another protocol made up by 10 experiments was performed to test the accuracy of the model. The model manifested a high accuracy. Compared to traditional method, the integrated application of uniform design and least-squares support vector machine greatly reduced the number of required experiments. What's more, higher transfection efficiency was achieved.</p> <p>Conclusion</p> <p>The integrated application of uniform design and least-squares support vector machine is a simple technique for obtaining high transfection efficiency. Using this novel method, the number of required experiments would be greatly cut down while higher efficiency would be gained. Least-squares support vector machine may be applicable to many other problems that need to be optimized.</p

    Paleotopography continues to drive surface to deep-layer interactions in a subtropical Critical Zone Observatory

    Get PDF
    This study was supported by the National Natural Science Foundation of China (grant No. 41571130051, No. 41771251 and No. 41977003), the National Key Research and Development Program of China (No. 2018YFE0107000) and the UK Natural Environmental Research Council (NE/N007611/1). We thank the individual authors of each study regarding critical zone research in the Red Soil CZO. We are grateful to Dong-Sheng Yu, Li-Gang Zhou, Shun-Hua Yang and Yue Zhao for their support in conducting the GPR survey. We are grateful to Qin-Bo Cheng for interpreting the radargram images. Data Availability: All radargram data, soil data and environmental predictors used in this study are available from the corresponding author upon request.Peer reviewedPostprin

    Experimental measurement-device-independent quantum digital signatures over a metropolitan network

    Get PDF
    Quantum digital signatures (QDS) provide a means for signing electronic communications with informationtheoretic security. However, all previous demonstrations of quantum digital signatures assume trusted measurement devices. This renders them vulnerable against detector side-channel attacks, just like quantum key distribution. Here, we exploit a measurement-device-independent (MDI) quantum network, over a 200-square-kilometer metropolitan area, to perform a field test of a three-party measurement-device-independent quantum digital signature (MDI-QDS) scheme that is secure against any detector side-channel attack. In so doing, we are able to successfully sign a binary message with a security level of about 1E-7. Remarkably, our work demonstrates the feasibility of MDI-QDS for practical applications.Comment: 5 pages, 1 figure, 2 tables, supplemental materials included as ancillary fil
    corecore