2,797 research outputs found

    Testing the homogeneity of the Universe using gamma-ray bursts

    Full text link
    In this paper, we study the homogeneity of the GRB distribution using a subsample of the Greiner GRB catalogue, which contains 314 objects with redshift 0<z<2.50<z<2.5 (244 of them discovered by the Swift GRB Mission). We try to reconcile the dilemma between the new observations and the current theory of structure formation and growth. To test the results against the possible biases in redshift determination and the incompleteness of the Greiner sample, we also apply our analysis to the 244 GRBs discovered by Swift and the subsample presented by the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS). The real space two-point correlation function (2PCF) of GRBs, ξ(r),\xi(r), is calculated using a Landy-Szalay estimator. We perform a standard least-χ2\chi^2 fit to the measured 2PCFs of GRBs. We use the best-fit 2PCF to deduce a recently defined homogeneity scale. The homogeneity scale, RHR_H, is defined as the comoving radius of the sphere inside which the number of GRBs N(<r)N(<r) is proportional to r3r^3 within 1%1\%, or equivalently above which the correlation dimension of the sample D2D_2 is within 1%1\% of D2=3D_2=3. For the Swift subsample of 244 GRBs, the correlation length and slope are r0=387.51±132.75 h−1r_0= 387.51 \pm 132.75~h^{-1}Mpc and γ=1.57±0.65\gamma = 1.57\pm 0.65 (at 1σ1\sigma confidence level). The corresponding scale for a homogeneous distribution of GRBs is r≥7,700 h−1r\geq 7,700~h^{-1}Mpc. The results help to alleviate the tension between the new discovery of the excess clustering of GRBs and the cosmological principle of large-scale homogeneity. It implies that very massive structures in the relatively local Universe do not necessarily violate the cosmological principle and could conceivably be present.Comment: 7 pages, 5 figures, accepted by Astronomy & Astrophysics. The data used in this work (e.g. Tables 1 and 2) are publicly available online in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A

    Efficient Optimization of Performance Measures by Classifier Adaptation

    Full text link
    In practical applications, machine learning algorithms are often needed to learn classifiers that optimize domain specific performance measures. Previously, the research has focused on learning the needed classifier in isolation, yet learning nonlinear classifier for nonlinear and nonsmooth performance measures is still hard. In this paper, rather than learning the needed classifier by optimizing specific performance measure directly, we circumvent this problem by proposing a novel two-step approach called as CAPO, namely to first train nonlinear auxiliary classifiers with existing learning methods, and then to adapt auxiliary classifiers for specific performance measures. In the first step, auxiliary classifiers can be obtained efficiently by taking off-the-shelf learning algorithms. For the second step, we show that the classifier adaptation problem can be reduced to a quadratic program problem, which is similar to linear SVMperf and can be efficiently solved. By exploiting nonlinear auxiliary classifiers, CAPO can generate nonlinear classifier which optimizes a large variety of performance measures including all the performance measure based on the contingency table and AUC, whilst keeping high computational efficiency. Empirical studies show that CAPO is effective and of high computational efficiency, and even it is more efficient than linear SVMperf.Comment: 30 pages, 5 figures, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence, 201

    Finslerian MOND versus the Strong Gravitational Lensing of the Early-type Galaxies

    Full text link
    The gravitational lensing of Bullet Clusters and early-type galaxies pose serious challenges on the validity of MOND. Recently, Finslerian MOND, a generalization of MOND in the framework of Finsler gravity, has been proposed to explain the mass discrepancy problem of Bullet Cluster 1E 0657\ 558. In this paper, we check the validity of the Finslerian MOND in describing the strong gravitational lensing of early-type galaxies. The investigation on ten strong lenses of the CASTLES samples shows that there is no strong evidence for the existence of dark matter.Comment: 11 pages, 2 figures, 2 table

    Evolving Optical Networks for Latency-Sensitive Smart-Grid Communications via Optical Time Slice Switching (OTSS) Technologies

    Get PDF
    In this paper, we proposed a novel OTSS-assisted optical network architecture for smart-grid communication networks, which has unique requirements for low-latency connections. Illustrative results show that, OTSS can provide extremely better performance in latency and blocking probability than conventional flexi-grid optical networks.Comment: IEEE Photonics Society 1st Place Best Poster Award, on CLEO-PR/OECC/PGC 201
    • …
    corecore