8,635 research outputs found

    Modified holographic dark energy in DGP brane world

    Full text link
    In this paper, the cosmological dynamics of a modified holographic dark energy which is derived from the UV/IR duality by considering the black hole mass in higher dimensions as UV cutoff, is investigated in Dvali-Gabadaze-Porrati (DGP) brane world model. We choose Hubble horizon and future event horizon as IR cutoff respectively. And the two branches of the DGP model are both taken into account. When Hubble horizon is considered as IR cutoff, the modified holographic dark energy (HDE) behaves like an effect dark energy that modification of gravity in pure DGP brane world model acts and it can drive the expansion of the universe speed up at late time in ϵ=−1\epsilon=-1 branch which in pure DGP model can not undergo an accelerating phase. When future event horizon acts as IR cutoff, the equation of state parameter of the modified HDE can cross the phantom divide.Comment: 8 pages, 4 figures, accepted for publication in PL

    Revisiting the Ω(2012)\Omega(2012) as a hadronic molecule and its strong decays

    Full text link
    Recently, the Belle collaboration measured the ratios of the branching fractions of the newly observed Ω(2012)\Omega(2012) excited state. They did not observe significant signals for the Ω(2012)→KˉΞ∗(1530)→KˉπΞ\Omega(2012) \to \bar{K} \Xi^*(1530) \to \bar{K} \pi \Xi decay, and reported an upper limit for the ratio of the three body decay to the two body decay mode of Ω(2012)→KˉΞ\Omega(2012) \to \bar{K} \Xi. In this work, we revisit the newly observed Ω(2012)\Omega(2012) from the molecular perspective where this resonance appears to be a dynamically generated state with spin-parity 3/2−3/2^- from the coupled channels interactions of the KˉΞ∗(1530)\bar{K} \Xi^*(1530) and ηΩ\eta \Omega in ss-wave and KˉΞ\bar{K} \Xi in dd-wave. With the model parameters for the dd-wave interaction, we show that the ratio of these decay fractions reported recently by the Belle collaboration can be easily accommodated.Comment: Published version. Published in Eur.\ Phys.\ J.\ C {\bf 80}, 361 (2020

    A multi-wavelength observation and investigation of six infrared dark clouds

    Full text link
    Context. Infrared dark clouds (IRDCs) are ubiquitous in the Milky Way, yet they play a crucial role in breeding newly-formed stars. Aims. With the aim of further understanding the dynamics, chemistry, and evolution of IRDCs, we carried out multi-wavelength observations on a small sample. Methods. We performed new observations with the IRAM 30 m and CSO 10.4 m telescopes, with tracers HCO+{\rm HCO^+}, HCN, N2H+{\rm N_2H^+}, C18O{\rm C^{18}O}, DCO+^+, SiO, and DCN toward six IRDCs G031.97+00.07, G033.69-00.01, G034.43+00.24, G035.39-00.33, G038.95-00.47, and G053.11+00.05. Results. We investigated 44 cores including 37 cores reported in previous work and seven newly-identified cores. Toward the dense cores, we detected 6 DCO+^+, and 5 DCN lines. Using pixel-by-pixel spectral energy distribution (SED) fits of the Herschel\textit{Herschel} 70 to 500 μ\mum, we obtained dust temperature and column density distributions of the IRDCs. We found that N2H+{\rm N_2H^+} emission has a strong correlation with the dust temperature and column density distributions, while C18O{\rm C^{18}O} showed the weakest correlation. It is suggested that N2H+{\rm N_2H^+} is indeed a good tracer in very dense conditions, but C18O{\rm C^{18}O} is an unreliable one, as it has a relatively low critical density and is vulnerable to freezing-out onto the surface of cold dust grains. The dynamics within IRDCs are active, with infall, outflow, and collapse; the spectra are abundant especially in deuterium species. Conclusions. We observe many blueshifted and redshifted profiles, respectively, with HCO+{\rm HCO^+} and C18O{\rm C^{18}O} toward the same core. This case can be well explained by model "envelope expansion with core collapse (EECC)".Comment: 24 pages, 11 figures, 4 tables. To be published in A&A. The resolutions of the pictures are cut dow

    On the fast Khintchine spectrum in continued fractions

    Full text link
    For x∈[0,1)x\in [0,1), let x=[a1(x),a2(x),...]x=[a_1(x), a_2(x),...] be its continued fraction expansion with partial quotients an(x),n≥1{a_n(x), n\ge 1}. Let ψ:N→N\psi : \mathbb{N} \rightarrow \mathbb{N} be a function with ψ(n)/n→∞\psi(n)/n\to \infty as n→∞n\to \infty. In this note, the fast Khintchine spectrum, i.e., the Hausdorff dimension of the set E(\psi):=\Big{x\in [0,1): \lim_{n\to\infty}\frac{1}{\psi(n)}\sum_{j=1}^n\log a_j(x)=1\Big} is completely determined without any extra condition on ψ\psi.Comment: 10 page

    Improving the security of quantum direct communication with authentication

    Full text link
    Two protocols of quantum direct communication with authentication [Phys. Rev. A {\bf 73}, 042305 (2006)] are recently proposed by Lee, Lim and Yang. In this paper we will show that in the two protocols the authenticator Trent should be prevented from knowing the secret message of communication. The first protocol can be eavesdropped by Trent using the the intercept-measure-resend attack, while the second protocol can be eavesdropped by Trent using single-qubit measurement. To fix these leaks, I revise the original versions of the protocols by using the Pauli-Z operation σz\sigma_z instead of the original bit-flip operation XX. As a consequence, the protocol securities are improved.Comment: Any suggestion,comment or help is welcome
    • …
    corecore