12,647 research outputs found

    An Analytic and Probabilistic Approach to the Problem of Matroid Representibility

    Full text link
    We introduce various quantities that can be defined for an arbitrary matroid, and show that certain conditions on these quantities imply that a matroid is not representable over Fq\mathbb{F}_q. Mostly, for a matroid of rank rr, we examine the proportion of size-(r−k)(r-k) subsets that are dependent, and give bounds, in terms of the cardinality of the matroid and qq a prime power, for this proportion, below which the matroid is not representable over Fq\mathbb{F}_q. We also explore connections between the defined quantities and demonstrate that they can be used to prove that random matrices have high proportions of subsets of columns independent

    Screw instability of the magnetic field connecting a rotating black hole with its surrounding disk

    Full text link
    Screw instability of the magnetic field connecting a rotating black hole (BH) with its surrounding disk is discussed based on the model of the coexistence of the Blandford-Znajek (BZ) process and the magnetic coupling (MC) process (CEBZMC). A criterion for the screw instability with the state of CEBZMC is derived based on the calculations of the poloidal and toroidal components of the magnetic field on the disk. It is shown by the criterion that the screw instability will occur, if the BH spin and the power-law index for the variation of the magnetic field on the disk are greater than some critical values. It turns out that the instability occurs outside some critical radii on the disk. It is argued that the state of CEBZMC always accompanies the screw instability. In addtition, we show that the screw instability contributes only a small fraction of magnetic extraction of energy from a rotating BH.Comment: 18 pages, 13 figures; Accepted by Ap

    Nucleon electromagnetic form factors in two-flavour QCD

    Get PDF
    We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting the form factors directly to the expressions of covariant baryonic chiral effective field theory. The final results for the charge radii and magnetic moment from our lattice calculations include, for the first time, a full error budget. We find that our estimates are compatible with experimental results within their overall uncertainties.Comment: 22 pages, 10 figures, citations modifie

    Nucleon axial form factors from two-flavour Lattice QCD

    Full text link
    We present preliminary results on the axial form factor GA(Q2)G_A(Q^2) and the induced pseudoscalar form factor GP(Q2)G_P(Q^2) of the nucleon. A systematic analysis of the excited-state contributions to form factors is performed on the CLS ensemble `N6' with mπ=340 MeVm_\pi = 340 \ \text{MeV} and lattice spacing a∌0.05 fma \sim 0.05 \ \text{fm}. The relevant three-point functions were computed with source-sink separations ranging from ts∌0.6 fmt_s \sim 0.6 \ \text{fm} to $t_s \sim \ 1.4 \ \text{fm}$. We observe that the form factors suffer from non-trivial excited-state contributions at the source-sink separations available to us. It is noted that naive plateau fits underestimate the excited-state contributions and that the method of summed operator insertions correctly accounts for these effects.Comment: 7 pages, 12 figures; talk presented at Lattice 2014 -- 32nd International Symposium on Lattice Field Theory, 23-28 June, 2014, Columbia University New York, N

    Baryon Fields with U_L(3) \times U_R(3) Chiral Symmetry: Axial Currents of Nucleons and Hyperons

    Full text link
    We use the conventional F and D octet and decimet generator matrices to reformulate chiral properties of local (non-derivative) and one-derivative non-local fields of baryons consisting of three quarks with flavor SU(3) symmetry that were expressed in SU(3) tensor form in Ref. [12]. We show explicitly the chiral transformations of the [(6,3)\oplus(3,6)] chiral multiplet in the "SU(3) particle basis", for the first time to our knowledge, as well as those of the (3,\bar{3}) \oplus (\bar{3}, 3), (8,1) \oplus (1,8) multiplets, which have been recorded before in Refs. [4,5]. We derive the vector and axial-vector Noether currents, and show explicitly that their zeroth (charge-like) components close the SU_L(3) \times SU_R(3) chiral algebra. We use these results to study the effects of mixing of (three-quark) chiral multiplets on the axial current matrix elements of hyperons and nucleons. We show, in particular, that there is a strong correlation, indeed a definite relation between the flavor-singlet (i.e. the zeroth), the isovector (the third) and the eighth flavor component of the axial current, which is in decent agreement with the measured ones.Comment: one typo correction, and accepted by PR

    Nuclear symmetry potential in the relativistic impulse approximation

    Get PDF
    Using the relativistic impulse approximation with the Love-Franey \textsl{NN} scattering amplitude developed by Murdock and Horowitz, we investigate the low-energy (100 MeV≀Ekin≀400\leq E_{\mathrm{kin}}\leq 400 MeV) behavior of the nucleon Dirac optical potential, the Schr\"{o}dinger-equivalent potential, and the nuclear symmetry potential in isospin asymmetric nuclear matter. We find that the nuclear symmetry potential at fixed baryon density decreases with increasing nucleon energy. In particular, the nuclear symmetry potential at saturation density changes from positive to negative values at nucleon kinetic energy of about 200 MeV. Furthermore,the obtained energy and density dependence of the nuclear symmetry potential is consistent with those of the isospin- and momentum-dependent MDI interaction with x=0x=0, which has been found to describe reasonably both the isospin diffusion data from heavy-ion collisions and the empirical neutron-skin thickness of 208^{208} Pb.Comment: 8 pages, 5 figures, revised version to appear in PR

    Nearly strain-free heteroepitaxial system for fundamental studies of pulsed laser deposition: EuTiO3 on SrTiO3

    Full text link
    High quality epitaxial thin-films of EuTiO3 have been grown on the (001) surface of SrTiO3 using pulsed laser deposition. In situ x-ray reflectivity measurements reveal that the growth is two-dimensional and enable real-time monitoring of the film thickness and roughness during growth. The film thickness, surface mosaic, surface roughness, and strain were characterized in detail using ex situ x-ray diffraction. The thicnkess and composition were confirmed with Rutherford Backscattering. The EuTiO3 films grow two-dimensionally, epitaxially, pseudomorphically, with no measurable in-plane lattice mismatch.Comment: 7 pages, 6 figure

    Chaotic scattering through coupled cavities

    Full text link
    We study the chaotic scattering through an Aharonov-Bohm ring containing two cavities. One of the cavities has well-separated resonant levels while the other is chaotic, and is treated by random matrix theory. The conductance through the ring is calculated analytically using the supersymmetry method and the quantum fluctuation effects are numerically investigated in detail. We find that the conductance is determined by the competition between the mean and fluctuation parts. The dephasing effect acts on the fluctuation part only. The Breit-Wigner resonant peak is changed to an antiresonance by increasing the ratio of the level broadening to the mean level spacing of the random cavity, and the asymmetric Fano form turns into a symmetric one. For the orthogonal and symplectic ensembles, the period of the Aharonov-Bohm oscillations is half of that for regular systems. The conductance distribution function becomes independent of the ensembles at the resonant point, which can be understood by the mode-locking mechanism. We also discuss the relation of our results to the random walk problem.Comment: 13 pages, 9 figures; minor change

    Some mass relations for mesons and baryons in Regge phenomenology

    Full text link
    In the quasilinear Regge trajectory ansatz, some useful linear mass inequalities, quadratic mass inequalities and quadratic mass equalities are derived for mesons and baryons. Based on these relations, mass ranges of some mesons and baryons are given. The masses of bc-bar and ss-bar belonging to the pseudoscalar, vector and tensor meson multiplets are also extracted. The J^P of the baryon Xi_cc(3520) is assigned to be 1/2^+. The numerical values for Regge slopes and intercepts of the 1/2^+ and 3/2^+ SU(4) baryon trajectories are extracted and the masses of the orbital excited baryons lying on the 1/2^+ and 3/2^+ trajectories are estimated. The J^P assignments of baryons Xi_c(2980), Xi_c(3055), Xi_c(3077) and Xi_c(3123) are discussed. The predictions are in reasonable agreement with the existing experimental data and those suggested in many other different approaches. The mass relations and the predictions may be useful for the discovery of the unobserved meson and baryon states and the J^P assignment of these states.Comment: 41 pages, 1 figure, Late

    Hyperon polarization in e^-p --> e^-HK with polarized electron beams

    Full text link
    We apply the picture proposed in a recent Letter for transverse hyperon polarization in unpolarized hadron-hadron collisions to the exclusive process e^-p --> e^-HK such as e^-p-->e^-\Lambda K^+, e^-p --> e^-\Sigma^+ K^0, or e^-p--> e^-\Sigma^0 K^+, or the similar process e^-p\to e^-n\pi^+ with longitudinally polarized electron beams. We present the predictions for the longitudinal polarizations of the hyperons or neutron in these reactions, which can be used as further tests of the picture.Comment: 15 pages, 2 figures. submitted to Phys. Rev.
    • 

    corecore