334 research outputs found

    SimPLE: Similar Pseudo Label Exploitation for Semi-Supervised Classification

    Full text link
    A common classification task situation is where one has a large amount of data available for training, but only a small portion is annotated with class labels. The goal of semi-supervised training, in this context, is to improve classification accuracy by leverage information not only from labeled data but also from a large amount of unlabeled data. Recent works have developed significant improvements by exploring the consistency constrain between differently augmented labeled and unlabeled data. Following this path, we propose a novel unsupervised objective that focuses on the less studied relationship between the high confidence unlabeled data that are similar to each other. The new proposed Pair Loss minimizes the statistical distance between high confidence pseudo labels with similarity above a certain threshold. Combining the Pair Loss with the techniques developed by the MixMatch family, our proposed SimPLE algorithm shows significant performance gains over previous algorithms on CIFAR-100 and Mini-ImageNet, and is on par with the state-of-the-art methods on CIFAR-10 and SVHN. Furthermore, SimPLE also outperforms the state-of-the-art methods in the transfer learning setting, where models are initialized by the weights pre-trained on ImageNet or DomainNet-Real. The code is available at github.com/zijian-hu/SimPLE.Comment: Accepted to CVPR 2021. First two authors contributed equall

    Blooms of the woloszynskioid dinoflagellate Tovellia diexiensis sp nov (Dinophyceae) in Baishihai Lake at the eastern edge of Tibetan Plateau

    Get PDF
    Freshwater red tides due to dinoflagellates have caused spectacular and regular &quot;summer reddening&quot; in recent years in Baishihai Lake, a temperate, meromictic, meso- or oligotrophic, high-altitude, landslide-dammed, deep lake located at the eastern edge of Tibetan Plateau in China. Based on morphological and molecular analyses, the causative organism has been identified as a new woloszynskioid dinoflagellate, Tovellia diexiensis Q. Zhang et G.X. Liu sp. nov. The vegetative cells are 20-32 mu m long and 16-24 mu m wide. They have a hemispherical episome and a broadly rounded hyposome with a short characteristic antapical spine. Usually cells are bright red due to the presence of numerous red-pigmented bodies, which often masked the yellowish green discoid chloroplasts. The amphiesma of motile cells comprise mainly quadrilateral, pentagonal or hexagonal thin plates, arranged in 4-5 latitudinal series on the episome, 1 in the cingulum and 4 on, the hyposome. Molecular phylogenies based on small subunit ribosomal DNA and large subunit ribosomal DNA (LSU) indicate T diexiensis from Baishihai Lake to belong to the family Tovelliaceae, which was monophyletic in our LSU phylogenies. During the bloom-forming period in 2005, cell density of T diexiensis reached 9.15 x 10(5) cells L-1. Astaxanthin and its diester were found to be the major pigments in T diexiensis, resulting in a characteristic blood-red color of the water in Baishihai Lake.</p
    • …
    corecore