46,639 research outputs found
Signatures of electron-boson coupling in half-metallic ferromagnet MnGe: study of electron self-energy obtained from infrared spectroscopy
We report results of our infrared and optical spectroscopy study of a
half-metallic ferromagnet MnGe. This compound is currently being
investigated as a potential injector of spin polarized currents into germanium.
Infrared measurements have been performed over a broad frequency (50 - 50000
cm) and temperature (10 - 300 K) range. From the complex optical
conductivity we extract the electron self-energy
. The calculation of is based on novel
numerical algorithms for solution of systems of non-linear equations. The
obtained self-energy provides a new insight into electron correlations in
MnGe. In particular, it reveals that charge carriers may be coupled to
bosonic modes, possibly of magnetic origin
Can Baryonic Features Produce the Observed 100 Mpc Clustering?
We assess the possibility that baryonic acoustic oscillations in adiabatic
models may explain the observations of excess power in large-scale structure on
100h^-1 Mpc scales. The observed location restricts models to two extreme areas
of parameter space. In either case, the baryon fraction must be large
(Omega_b/Omega_0 > 0.3) to yield significant features. The first region
requires Omega_0 < 0.2h to match the location, implying large blue tilts
(n>1.4) to satisfy cluster abundance constraints. The power spectrum also
continues to rise toward larger scales in these models. The second region
requires Omega_0 near 1, implying Omega_b well out of the range of big bang
nucleosynthesis constraints; moreover, the peak is noticeably wider than the
observations suggest. Testable features of both solutions are that they require
moderate reionization and thereby generate potentially observable (about 1 uK)
large-angle polarization, as well as sub-arc-minute temperature fluctuations.
In short, baryonic features in adiabatic models may explain the observed excess
only if currently favored determinations of cosmological parameters are in
substantial error or if present surveys do not represent a fair sample of
100h^-1 Mpc structures.Comment: LaTeX, 7 pages, 5 Postscript figures, submitted to ApJ Letter
Predicting Solid-State Heats of Formation of Newly Synthesized Polynitrogen Materials by Using Quantum Mechanical Calculations
We present density functional theory level predictions and analysis of the basic properties of newly synthesized high-nitrogen compounds together with 3,6-bis(2H-tetrazol-5-yl)-1,2,4,5-tetrazine (BTT) and 3,3′-azobis(6-amino-1,2,4,5-tetrazine) (DAAT), for which experimental data are available. The newly synthesized high-nitrogen compounds are based on tricycle fused 1,2,4-triazine and 1,2,4,5-tetrazine heterocycles. In this work, the molecules BTT and DAAT have been studied in order to validate the theoretical approach and to facilitate further progress developments for the molecules of interest. Molecular structural properties are clarified, and IR spectra predictions are provided to help detection of those compounds in the experiment. The energy content of the molecules in the gas phase is evaluated by calculating standard enthalpies of formation, by using a special selection of isodesmic reaction paths. We also include estimates of the condensed-phase heats of formation and heats of sublimation in the framework of the Politzer approach. The obtained properties are consistent with those new high-nitrogen compounds being a promising set of advanced energetic materials
Berezinskii-Kosterlitz-Thouless-like percolation transitions in the two-dimensional XY model
We study a percolation problem on a substrate formed by two-dimensional XY
spin configurations, using Monte Carlo methods. For a given spin configuration
we construct percolation clusters by randomly choosing a direction in the
spin vector space, and then placing a percolation bond between nearest-neighbor
sites and with probability ,
where governs the percolation process. A line of percolation thresholds
is found in the low-temperature range , where
is the XY coupling strength. Analysis of the correlation function , defined as the probability that two sites separated by a distance
belong to the same percolation cluster, yields algebraic decay for , and the associated critical exponent depends on and .
Along the threshold line , the scaling dimension for is,
within numerical uncertainties, equal to . On this basis, we conjecture
that the percolation transition along the line is of the
Berezinskii-Kosterlitz-Thouless type.Comment: 23 pages, 14 figure
Hydrodynamical Simulations of the IGM at High Mach Numbers
We present a new approach to doing Eulerian computational fluid dynamics that
is designed to work at high Mach numbers encountered in hydrodynamical
simulations of the IGM. In conventional Eulerian CFD, the thermal energy is
poorly tracked in supersonic bulk flows where local fluid variables cannot be
accurately separated from the much larger bulk flow components. We described a
method in which local fluid quantities can be directly tracked and the Eulerian
fluid equations solved in a local frame moving with the flow. The new algorithm
has been used to run large hydrodynamical simulations on a 1024^3 grid to study
the kinetic SZ effect. The KSZ power spectrum is broadly peaked at l~10^4 with
temperature fluctuations on micro Kelvin levels.Comment: 6 pages, to appear in the Proc. from the IGM/Galaxy Connection
conferenc
Spectral Line Broadening and Angular Blurring due to Spacetime Geometry Fluctuations
We treat two possible phenomenological effects of quantum fluctuations of
spacetime geometry: spectral line broadening and angular blurring of the image
of a distance source. A geometrical construction will be used to express both
effects in terms of the Riemann tensor correlation function. We apply the
resulting expressions to study some explicit examples in which the fluctuations
arise from a bath of gravitons in either a squeezed state or a thermal state.
In the case of a squeezed state, one has two limits of interest: a coherent
state which exhibits classical time variation but no fluctuations, and a
squeezed vacuum state, in which the fluctuations are maximized.Comment: 21 pages, 2 figures. Dedicated to Raphael Sorkin on the occasion of
his 60th birthday. (v2: several references added and some minor errors
corrected
- …