14,587 research outputs found

    Relative Severi inequality for fibrations of maximal Albanese dimension over curves

    Full text link
    Let f:X→Bf: X \to B be a relatively minimal fibration of maximal Albanese dimension from a variety XX of dimension n≥2n \ge 2 to a curve BB defined over an algebraically closed field of characteristic zero. We prove that KX/Bn≥2n!χfK_{X/B}^n \ge 2n! \chi_f, which was conjectured by Barja in [2]. Via the strategy outlined in [5], it also leads to a new proof of the Severi inequality for varieties of maximal Albanese dimension. Moreover, when the equality holds and χf>0\chi_f > 0, we prove that the general fiber FF of ff has to satisfy the Severi equality that KFn−1=2(n−1)!χ(F,ωF)K_F^{n-1} = 2(n-1)! \chi(F, \omega_F). We also prove some sharper results of the same type under extra assumptions.Comment: Comments are welcom

    Deforming black holes with even multipolar differential rotation boundary

    Full text link
    Motivated by the novel asymptotically global AdS4_4 solutions with deforming horizon in [JHEP {\bf 1802}, 060 (2018)], we analyze the boundary metric with even multipolar differential rotation and numerically construct a family of deforming solutions with quadrupolar differential rotation boundary, including two classes of solutions: solitons and black holes. In contrast to solutions with dipolar differential rotation boundary, we find that even though the norm of Killing vector ∂t\partial_t becomes spacelike for certain regions of polar angle θ\theta when ε>2\varepsilon>2, solitons and black holes with quadrupolar differential rotation still exist and do not develop hair due to superradiance. Moreover, at the same temperature, the horizonal deformation of quadrupolar rotation is smaller than that of dipolar rotation. Furthermore, we also study the entropy and quasinormal modes of the solutions, which have the analogous properties to that of dipolar rotation.Comment: 18 pages, 21 figure

    Dynamical Mean Field Theory for the Bose-Hubbard Model

    Full text link
    The dynamical mean field theory (DMFT), which is successful in the study of strongly correlated fermions, was recently extended to boson systems [Phys. Rev. B {\textbf 77}, 235106 (2008)]. In this paper, we employ the bosonic DMFT to study the Bose-Hubbard model which describes on-site interacting bosons in a lattice. Using exact diagonalization as the impurity solver, we get the DMFT solutions for the Green's function, the occupation density, as well as the condensate fraction on a Bethe lattice. Various phases are identified: the Mott insulator, the Bose-Einstein condensed (BEC) phase, and the normal phase. At finite temperatures, we obtain the crossover between the Mott-like regime and the normal phase, as well as the BEC-to-normal phase transition. Phase diagrams on the μ/U−t~/U\mu/U-\tilde{t}/U plane and on the T/U−t~/UT/U-\tilde{t}/U plane are produced (t~\tilde{t} is the scaled hopping amplitude). We compare our results with the previous ones, and discuss the implication of these results to experiments.Comment: 11 pages, 8 figure

    Channel Covariance Matrix Estimation via Dimension Reduction for Hybrid MIMO MmWave Communication Systems

    Get PDF
    Hybrid massive MIMO structures with lower hardware complexity and power consumption have been considered as a potential candidate for millimeter wave (mmWave) communications. Channel covariance information can be used for designing transmitter precoders, receiver combiners, channel estimators, etc. However, hybrid structures allow only a lower-dimensional signal to be observed, which adds difficulties for channel covariance matrix estimation. In this paper, we formulate the channel covariance estimation as a structured low-rank matrix sensing problem via Kronecker product expansion and use a low-complexity algorithm to solve this problem. Numerical results with uniform linear arrays (ULA) and uniform squared planar arrays (USPA) are provided to demonstrate the effectiveness of our proposed method

    Matrix Completion-Based Channel Estimation for MmWave Communication Systems With Array-Inherent Impairments

    Get PDF
    Hybrid massive MIMO structures with reduced hardware complexity and power consumption have been widely studied as a potential candidate for millimeter wave (mmWave) communications. Channel estimators that require knowledge of the array response, such as those using compressive sensing (CS) methods, may suffer from performance degradation when array-inherent impairments bring unknown phase errors and gain errors to the antenna elements. In this paper, we design matrix completion (MC)-based channel estimation schemes which are robust against the array-inherent impairments. We first design an open-loop training scheme that can sample entries from the effective channel matrix randomly and is compatible with the phase shifter-based hybrid system. Leveraging the low-rank property of the effective channel matrix, we then design a channel estimator based on the generalized conditional gradient (GCG) framework and the alternating minimization (AltMin) approach. The resulting estimator is immune to array-inherent impairments and can be implemented to systems with any array shapes for its independence of the array response. In addition, we extend our design to sample a transformed channel matrix following the concept of inductive matrix completion (IMC), which can be solved efficiently using our proposed estimator and achieve similar performance with a lower requirement of the dynamic range of the transmission power per antenna. Numerical results demonstrate the advantages of our proposed MC-based channel estimators in terms of estimation performance, computational complexity and robustness against array-inherent impairments over the orthogonal matching pursuit (OMP)-based CS channel estimator.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • …
    corecore