1,293 research outputs found

    Real-Time Hand Shape Classification

    Full text link
    The problem of hand shape classification is challenging since a hand is characterized by a large number of degrees of freedom. Numerous shape descriptors have been proposed and applied over the years to estimate and classify hand poses in reasonable time. In this paper we discuss our parallel framework for real-time hand shape classification applicable in real-time applications. We show how the number of gallery images influences the classification accuracy and execution time of the parallel algorithm. We present the speedup and efficiency analyses that prove the efficacy of the parallel implementation. Noteworthy, different methods can be used at each step of our parallel framework. Here, we combine the shape contexts with the appearance-based techniques to enhance the robustness of the algorithm and to increase the classification score. An extensive experimental study proves the superiority of the proposed approach over existing state-of-the-art methods.Comment: 11 page

    An explorative study of interface support for image searching

    Get PDF
    In this paper we study interfaces for image retrieval systems. Current image retrieval interfaces are limited to providing query facilities and result presentation. The user can inspect the results and possibly provide feedback on their relevance for the current query. Our approach, in contrast, encourages the user to group and organise their search results and thus provide more fine-grained feedback for the system. It combines the search and management process, which - according to our hypothesis - helps the user to onceptualise their search tasks and to overcome the query formulation problem. An evaluation, involving young design-professionals and di®erent types of information seeking scenarios, shows that the proposed approach succeeds in encouraging the user to conceptualise their tasks and that it leads to increased user satisfaction. However, it could not be shown to increase performance. We identify the problems in the current setup, which when eliminated should lead to more effective searching overall

    Improving Multiple-CMP Systems Using Token Coherence

    Get PDF
    Improvements in semiconductor technology now enable Chip Multiprocessors (CMPs). As many future computer systems will use one or more CMPs and support shared memory, such systems will have caches that must be kept coherent. Coherence is a particular challenge for Multiple-CMP (M-CMP) systems. One approach is to use a hierarchical protocol that explicitly separates the intra-CMP coherence protocol from the inter-CMP protocol, but couples them hierarchically to maintain coherence. However, hierarchical protocols are complex, leading to subtle, difficult-to-verify race conditions. Furthermore, most previous hierarchical protocols use directories at one or both levels, incurring indirections—and thus extra latency—for sharing misses, which are common in commercial workloads. In contrast, this paper exploits the separation of correctness substrate and performance policy in the recently-proposed token coherence protocol to develop the first M-CMP coherence protocol that is flat for correctness, but hierarchical for performance. Via model checking studies, we show that flat correctness eases verification. Via simulation with micro-benchmarks, we make new protocol variants more robust under contention. Finally, via simulation with commercial workloads on a commercial operating system, we show that new protocol variants can be 10-50% faster than a hierarchical directory protocol

    Plane waves with negative phase velocity in Faraday chiral mediums

    Full text link
    The propagation of plane waves in a Faraday chiral medium is investigated. Conditions for the phase velocity to be directed opposite to the direction of power flow are derived for propagation in an arbitrary direction; simplified conditions which apply to propagation parallel to the distinguished axis are also established. These negative phase-velocity conditions are explored numerically using a representative Faraday chiral medium, arising from the homogenization of an isotropic chiral medium and a magnetically biased ferrite. It is demonstrated that the phase velocity may be directed opposite to power flow, provided that the gyrotropic parameter of the ferrite component medium is sufficiently large compared with the corresponding nongyrotropic permeability parameters.Comment: accepted for publication in Phys. Rev.

    Towards an Online Image-Based Tree Taxonomy

    Get PDF

    Bianchi Type V Viscous Fluid Cosmological Models in Presence of Decaying Vacuum Energy

    Full text link
    Bianchi type V viscous fluid cosmological model for barotropic fluid distribution with varying cosmological term Λ\Lambda is investigated. We have examined a cosmological scenario proposing a variation law for Hubble parameter HH in the background of homogeneous, anisotropic Bianchi type V space-time. The model isotropizes asymptotically and the presence of shear viscosity accelerates the isotropization. The model describes a unified expansion history of the universe indicating initial decelerating expansion and late time accelerating phase. Cosmological consequences of the model are also discussed.Comment: 10 pages, 3 figure

    Central extensions of groups of sections

    Full text link
    If q : P -> M is a principal K-bundle over the compact manifold M, then any invariant symmetric V-valued bilinear form on the Lie algebra k of K defines a Lie algebra extension of the gauge algebra by a space of bundle-valued 1-forms modulo exact forms. In the present paper we analyze the integrability of this extension to a Lie group extension for non-connected, possibly infinite-dimensional Lie groups K. If K has finitely many connected components we give a complete characterization of the integrable extensions. Our results on gauge groups are obtained by specialization of more general results on extensions of Lie groups of smooth sections of Lie group bundles. In this more general context we provide sufficient conditions for integrability in terms of data related only to the group K.Comment: 54 pages, revised version, to appear in Ann. Glob. Anal. Geo

    Equations of State in the Brans-Dicke cosmology

    Full text link
    We investigate the Brans-Dicke (BD) theory with the potential as cosmological model to explain the present accelerating universe. In this work, we consider the BD field as a perfect fluid with the energy density and pressure in the Jordan frame. Introducing the power-law potential and the interaction with the cold dark matter, we obtain the phantom divide which is confirmed by the native and effective equation of state. Also we can describe the metric f(R)f(R) gravity with an appropriate potential, which shows a future crossing of phantom divide in viable f(R)f(R) gravity models when employing the native and effective equations of state.Comment: 23 pages, 7 figure

    Paraneoplastic thrombocytosis in ovarian cancer

    Get PDF
    <p>Background: The mechanisms of paraneoplastic thrombocytosis in ovarian cancer and the role that platelets play in abetting cancer growth are unclear.</p> <p>Methods: We analyzed clinical data on 619 patients with epithelial ovarian cancer to test associations between platelet counts and disease outcome. Human samples and mouse models of epithelial ovarian cancer were used to explore the underlying mechanisms of paraneoplastic thrombocytosis. The effects of platelets on tumor growth and angiogenesis were ascertained.</p> <p>Results: Thrombocytosis was significantly associated with advanced disease and shortened survival. Plasma levels of thrombopoietin and interleukin-6 were significantly elevated in patients who had thrombocytosis as compared with those who did not. In mouse models, increased hepatic thrombopoietin synthesis in response to tumor-derived interleukin-6 was an underlying mechanism of paraneoplastic thrombocytosis. Tumorderived interleukin-6 and hepatic thrombopoietin were also linked to thrombocytosis in patients. Silencing thrombopoietin and interleukin-6 abrogated thrombocytosis in tumor-bearing mice. Anti–interleukin-6 antibody treatment significantly reduced platelet counts in tumor-bearing mice and in patients with epithelial ovarian cancer. In addition, neutralizing interleukin-6 significantly enhanced the therapeutic efficacy of paclitaxel in mouse models of epithelial ovarian cancer. The use of an antiplatelet antibody to halve platelet counts in tumor-bearing mice significantly reduced tumor growth and angiogenesis.</p> <p>Conclusions: These findings support the existence of a paracrine circuit wherein increased production of thrombopoietic cytokines in tumor and host tissue leads to paraneoplastic thrombocytosis, which fuels tumor growth. We speculate that countering paraneoplastic thrombocytosis either directly or indirectly by targeting these cytokines may have therapeutic potential. </p&gt
    corecore