20,444 research outputs found

    Quark Propagation in the Quark-Gluon Plasma

    Full text link
    It has recently been suggested that the quark-gluon plasma formed in heavy-ion collisions behaves as a nearly ideal fluid. That behavior may be understood if the quark and antiquark mean-free- paths are very small in the system, leading to a "sticky molasses" description of the plasma, as advocated by the Stony Brook group. This behavior may be traced to the fact that there are relatively low-energy qqˉq\bar{q} resonance states in the plasma leading to very large scattering lengths for the quarks. These resonances have been found in lattice simulation of QCD using the maximum entropy method (MEM). We have used a chiral quark model, which provides a simple representation of effects due to instanton dynamics, to study the resonances obtained using the MEM scheme. In the present work we use our model to study the optical potential of a quark in the quark-gluon plasma and calculate the quark mean-free-path. Our results represent a specific example of the dynamics of the plasma as described by the Stony Brook group.Comment: 17 pages, 4 figures, revtex

    Diethyl 2,5-diphenyl­furan-3,4-dicarboxyl­ate

    Get PDF
    In the title compound, C22H20O5, the substituted benzene rings are twisted away from the furan ring, making dihedral angles of 54.91 (14) and 20.96 (15)° with the furan ring. The dihedral angle between the two benzene rings is 46.89 (13)°. One ethyl group of one eth­oxy­carbonyl unit is disordered over two sets of sites with occupancies of 0.56 (12) and 0.44 (12). In the crystal, weak intra­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis

    Polarization and decoherence in a two-component Bose-Einstein Condensate

    Full text link
    We theoretically investigate polarization properties of a two-component Bose-Einstein condensate (BEC) and influence of decoherence induced by environment on BEC polarization through introducing four BEC Stokes operators which are quantum analog of the classical Stokes parameters for a light field. BEC polarization states can be geometrically described by a Poincar\'{e} sphere defined by expectation values of BEC Stokes operators. Without decoherence, it is shown that nonlinear inter-atomic interactions in the BEC induce periodic polarization oscillations whose periods depend on the difference between self-interaction in each component and inter-component interaction strengths. In particular, when inter-atomic nonlinear self-interaction in each BEC component equals inter-component nonlinear interaction, Stokes vector associated with Stokes operators precesses around a fixed axis in the dynamic evolution of the BEC. The value of the processing frequency is determined by the strength of the linear coupling between two components of the BEC. When decoherence is involved, we find each component of the Stokes vector decays which implies that decoherence depolarizes the BEC.Comment: 10 pages, 2 figure

    rac-Dimethyl 2-(1H-pyrrole-2-carboxamido)­butane­dioate

    Get PDF
    The title compound, C11H14N2O5, was synthesized by condensation of (RS)-2-amino­succinic acid dimethyl ester with 2-trichloro­acetyl­pyrrole at room temperature. The amide group is twisted by 7.4 (1)° from the plane of the pyrrole ring. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O hydrogen bonds into chains extending along the c axis
    corecore