136,326 research outputs found

    On Direct Product and Quotient of Strongly Connected Automata

    Full text link
    An automaton is isomorphic to the direct product of a permutation strongly connected automaton and a synchronizing strongly connected automaton if and only if all of the following conditions are met: (i) it is strongly connected; (ii) the minimal ideal of its transition semigroup is a right group and (iii) the ranges of the idempotent elements of the minimal ideal of its transition semigroup form a partition on its set of states.Comment: 11 pages including example

    A tensor-vector-scalar framework for modified dynamics and cosmic dark matter

    Get PDF
    I describe a tensor-vector-scalar theory that reconciles the galaxy scale success of modified Newtonian dynamics (MOND) with the cosmological scale evidence for CDM. The theory provides a cosmological basis for MOND in the sense that the predicted phenomenology only arises in a cosmological background. The theory contains an evolving effective potential, and scalar field oscillations in this potential comprise the cold dark matter; the de Broglie wavelength of these soft bosons, however, is sufficiently large that they cannot accumulate in galaxies. The theory predicts, inevitably, a constant anomalous acceleration in the outer solar system which, depending upon the choice of parameters, can be consistent with that detected by the Pioneer spacecrafts.Comment: minor corrections, numerical error corrected in eq. 37 and subsequent equations, accepted MNRA

    Recent advances on recursive filtering and sliding mode design for networked nonlinear stochastic systems: A survey

    Get PDF
    Copyright © 2013 Jun Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Some recent advances on the recursive filtering and sliding mode design problems for nonlinear stochastic systems with network-induced phenomena are surveyed. The network-induced phenomena under consideration mainly include missing measurements, fading measurements, signal quantization, probabilistic sensor delays, sensor saturations, randomly occurring nonlinearities, and randomly occurring uncertainties. With respect to these network-induced phenomena, the developments on filtering and sliding mode design problems are systematically reviewed. In particular, concerning the network-induced phenomena, some recent results on the recursive filtering for time-varying nonlinear stochastic systems and sliding mode design for time-invariant nonlinear stochastic systems are given, respectively. Finally, conclusions are proposed and some potential future research works are pointed out.This work was supported in part by the National Natural Science Foundation of China under Grant nos. 61134009, 61329301, 61333012, 61374127 and 11301118, the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant no. GR/S27658/01, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Wigner functions of thermo number state, photon subtracted and added thermo vacuum state at finite temperature

    Full text link
    Based on Takahashi-Umezawa thermo field dynamics and the order-invariance of Weyl ordered operators under similar transformations, we present a new approach to deriving the exact Wigner functions of thermo number state, photon subtracted and added thermo vacuum state. We find that these Wigner functions are related to the Gaussian-Laguerre type functions of temperature, whose statistical properties are then analysed.Comment: 10 pages and 2 figure

    Observation of a single atom in a magneto-optical trap

    Get PDF
    Fluorescence from Cs atoms in a magneto-optical trap is detected under conditions of very low atomic density. Discrete steps are observed in the fluorescent signal versus time and are associated with the arrival and departure of individual trapped atoms. Histograms of the frequency of occurrence of a given level of fluorescence exhibit a series of uniformly spaced peaks that are attributed to the presence of N = 0, 1, 2 atoms in the trap

    Transitions to Measure Synchronization in Coupled Hamiltonian Systems

    Full text link
    Transitions to measure synchronization in two coupled ϕ4\phi ^{4} lattices are investigated based on numerical simulations. The relationship between measure synchronization (MS), phase locking and system's total energy is studied both for periodic and chaotic states. Two different scalings are discovered during the process to MS according to phase locking. Random walk like phase synchronization in chaotic measure synchronization is found, and phase locking interrupted by phase slips irregularly is also investigated. Meanwhile, related analysis is qualitative given to explain this phenomenon.Comment: 10 pages, 6 figure
    corecore