95,339 research outputs found

    Nonequilibrium Dynamics of Charged Particles in an Electromagnetic Field: Causal and Stable Dynamics from 1/c Expansion of QED

    Full text link
    We derive from a microscopic Hamiltonian a set of stochastic equations of motion for a system of spinless charged particles in an electromagnetic (EM) field based on a consistent application of a dimensionful 1/c expansion of quantum electrodynamics (QED). All relativistic corrections up to order 1/c^3 are captured by the dynamics, which includes electrostatic interactions (Coulomb), magnetostatic backreaction (Biot-Savart), dissipative backreaction (Abraham-Lorentz) and quantum field fluctuations at zero and finite temperatures. With self-consistent backreaction of the EM field included we show that this approach yields causal and runaway-free equations of motion, provides new insights into charged particle backreaction, and naturally leads to equations consistent with the (classical) Darwin Hamiltonian and has quantum operator ordering consistent with the Breit Hamiltonian. To order 1/c^3 the approach leads to a nonstandard mass renormalization which is associated with magnetostatic self-interactions, and no cutoff is required to prevent runaways. Our new results also show that the pathologies of the standard Abraham-Lorentz equations can be seen as a consequence of applying an inconsistent (i.e. incomplete, mixed-order) expansion in 1/c, if, from the start, the analysis is viewed as generating a low-energy effective theory rather than an exact solution. Finally, we show that the 1/c expansion within a Hamiltonian framework yields well-behaved noise and dissipation, in addition to the multiple-particle interactions.Comment: 17 pages, 2 figure

    Universal scaling functions for bond percolation on planar random and square lattices with multiple percolating clusters

    Full text link
    Percolation models with multiple percolating clusters have attracted much attention in recent years. Here we use Monte Carlo simulations to study bond percolation on L1×L2L_{1}\times L_{2} planar random lattices, duals of random lattices, and square lattices with free and periodic boundary conditions, in vertical and horizontal directions, respectively, and with various aspect ratio L1/L2L_{1}/L_{2}. We calculate the probability for the appearance of nn percolating clusters, Wn,W_{n}, the percolating probabilities, PP, the average fraction of lattice bonds (sites) in the percolating clusters, n_{n} (n_{n}), and the probability distribution function for the fraction cc of lattice bonds (sites), in percolating clusters of subgraphs with nn percolating clusters, fn(cb)f_{n}(c^{b}) (fn(cs)f_{n}(c^{s})). Using a small number of nonuniversal metric factors, we find that WnW_{n}, PP, n_{n} (n_{n}), and fn(cb)f_{n}(c^{b}) (fn(cs)f_{n}(c^{s})) for random lattices, duals of random lattices, and square lattices have the same universal finite-size scaling functions. We also find that nonuniversal metric factors are independent of boundary conditions and aspect ratios.Comment: 15 pages, 11 figure

    Theoretical study of nuclear spin polarization and depolarization in self-assembled quantum dots

    Full text link
    We investigate how the strain-induced nuclear quadrupole interaction influences the degree of nuclear spin polarization in self-assembled quantum dots. Our calculation shows that the achievable nuclear spin polarization in In_{x}Ga_{1-x}As quantum dots is related to the concentration of indium and the resulting strain distribution in the dots. The interplay between the nuclear quadrupole interaction and Zeeman splitting leads to interesting features in the magnetic field dependence of the nuclear spin polarization. Our results are in qualitative agreement with measured nuclear spin polarization by various experimental groups.Comment: 14 pages, 13 figures, submitted to Physical Review

    Time-dependent Ginzburg-Landau equations for mixed d- and s-wave superconductors

    Get PDF
    A set of coupled time-dependent Ginzburg-Landau equations (TDGL) for superconductors of mixed d- and s-wave symmetry are derived microscopically from the Gor'kov equations by using the analytical continuation technique. The scattering effects due to impurities with both nonmagnetic and magnetic interactions are considered. We find that the d- and s-wave components of the order parameter can have very different relaxation times in the presence of nonmagnetic impurities. This result is contrary to a set of phenomenologically proposed TDGL equations and thus may lead to new physics in the dynamics of flux motion.Comment: 22 pages, 6 figures are available upon request, to appear in Phys. Rev.

    Spectroscopic signatures of the Larkin-Ovchinnikov state in the conductance characteristics of a normal-metal/superconductor junction

    Get PDF
    Using a discrete-lattice approach, we calculate the conductance spectra between a normal metal and an s-wave Larkin-Ovchinnikov (LO) superconductor, with the junction interface oriented {\em along} the direction of the order-parameter (OP) modulation. The OP sign reversal across one single nodal line can induce a sizable number of zero-energy Andreev bound states around the nodal line, and a hybridized midgap-states band is formed amid a momentum-dependent gap as a result of the periodic array of nodal lines in the LO state. This band-in-gap structure and its anisotropic properties give rise to distinctive features in both the point-contact and tunneling spectra as compared with the BCS and Fulde-Ferrell cases. These spectroscopic features can serve as distinguishing signatures of the LO state.Comment: 8 pages, 5 figures; version as publishe

    Decoherence in Quantum Gravity: Issues and Critiques

    Get PDF
    An increasing number of papers have appeared in recent years on decoherence in quantum gravity at the Planck energy. We discuss the meaning of decoherence in quantum gravity starting from the common notion that quantum gravity is a theory for the microscopic structures of spacetime, and invoking some generic features of quantum decoherence from the open systems viewpoint. We dwell on a range of issues bearing on this process including the relation between statistical and quantum, noise from effective field theory, the meaning of stochasticity, the origin of non-unitarity and the nature of nonlocality in this and related contexts. To expound these issues we critique on two representative theories: One claims that decoherence in quantum gravity scale leads to the violation of CPT symmetry at sub-Planckian energy which is used to explain today's particle phenomenology. The other uses this process in place with the Brownian motion model to prove that spacetime foam behaves like a thermal bath.Comment: 25 pages, proceedings of DICE06 (Piombino

    Can Baryonic Features Produce the Observed 100 Mpc Clustering?

    Get PDF
    We assess the possibility that baryonic acoustic oscillations in adiabatic models may explain the observations of excess power in large-scale structure on 100h^-1 Mpc scales. The observed location restricts models to two extreme areas of parameter space. In either case, the baryon fraction must be large (Omega_b/Omega_0 > 0.3) to yield significant features. The first region requires Omega_0 < 0.2h to match the location, implying large blue tilts (n>1.4) to satisfy cluster abundance constraints. The power spectrum also continues to rise toward larger scales in these models. The second region requires Omega_0 near 1, implying Omega_b well out of the range of big bang nucleosynthesis constraints; moreover, the peak is noticeably wider than the observations suggest. Testable features of both solutions are that they require moderate reionization and thereby generate potentially observable (about 1 uK) large-angle polarization, as well as sub-arc-minute temperature fluctuations. In short, baryonic features in adiabatic models may explain the observed excess only if currently favored determinations of cosmological parameters are in substantial error or if present surveys do not represent a fair sample of 100h^-1 Mpc structures.Comment: LaTeX, 7 pages, 5 Postscript figures, submitted to ApJ Letter

    121,123Sb NQR as a microscopic probe in Te doped correlated semimetal FeSb2 : emergence of electronic Griffith phase, magnetism and metallic behavior %

    Full text link
    121,123Sb^{121,123}Sb nuclear quadrupole resonance (NQR) was applied to Fe(Sb1−xTex)2Fe(Sb_{1-x}Te_x)_2 in the low doping regime (\emph{x = 0, 0.01} and \emph{0.05}) as a microscopic zero field probe to study the evolution of \emph{3d} magnetism and the emergence of metallic behavior. Whereas the NQR spectra itself reflects the degree of local disorder via the width of the individual NQR lines, the spin lattice relaxation rate (SLRR) 1/T1(T)1/T_1(T) probes the fluctuations at the SbSb - site. The fluctuations originate either from conduction electrons or from magnetic moments. In contrast to the semi metal FeSb2FeSb_2 with a clear signature of the charge and spin gap formation in 1/T1(T)T(∼exp/(ΔkBT))1/T_1(T)T ( \sim exp/ (\Delta k_BT) ) , the 1\% TeTe doped system exhibits almost metallic conductivity and a almost filled gap. A weak divergence of the SLRR coefficient 1/T1(T)T∼T−n∼T−0.21/T_1(T)T \sim T^{-n} \sim T^{-0.2} points towards the presence of electronic correlations towards low temperatures wheras the \textit{5\%} TeTe doped sample exhibits a much larger divergence in the SLRR coefficient showing 1/T1(T)T∼T−0.721/T_1(T)T \sim T^{-0.72} . According to the specific heat divergence a power law with n = 2 m = 0.56n\ =\ 2\ m\ =\ 0.56 is expected for the SLRR. Furthermore TeTe-doped FeSb2FeSb_2 as a disordered paramagnetic metal might be a platform for the electronic Griffith phase scenario. NQR evidences a substantial asymmetric broadening of the 121,123Sb^{121,123}Sb NQR spectrum for the \emph{5\%} sample. This has purely electronic origin in agreement with the electronic Griffith phase and stems probably from an enhanced SbSb-TeTe bond polarization and electronic density shift towards the TeTe atom inside SbSb-TeTe dumbbell
    • …
    corecore