3,636 research outputs found

    Advancing Android Activity Recognition Service with Markov Smoother: Practical Solutions

    Get PDF
    Common use of smartphones is a compelling reason for performing activity recognition with on-board sensors as it is more practical than other approaches, such as wearable sensors and augmented environments. Many solutions have been proposed by academia, but practical use is limited to experimental settings. Ad hoc solutions exist with different degrees in recognition accuracy and efficiency. To ease the development of activity recognition for the mobile application eco-system, Google released an activity recognition service on their Android platform. In this paper, we present a systematic evaluation of this activity recognition service and share the lesson learnt. Through our experiments, we identified scenarios in which the recognition accuracy was barely acceptable. We analyze the cause of the inaccuracy and propose four practical and light-weight solutions to significantly improve the recognition accuracy and efficiency. Our evaluation confirmed the improvement. As a contribution, we released the proposed solutions as open-source projects for developers who want to incorporate activity recognition into their applications

    Entanglement distribution maximization over one-side Gaussian noisy channel

    Full text link
    The optimization of entanglement evolution for two-mode Gaussian pure states under one-side Gaussian map is studied. Even there isn't complete information about the one-side Gaussian noisy channel, one can still maximize the entanglement distribution by testing the channel with only two specific states

    Rigid vortices in MgB2

    Full text link
    Magnetic relaxation of high-pressure synthesized MgB2_2 bulks with different thickness is investigated. It is found that the superconducting dia-magnetic moment depends on time in a logarithmic way; the flux-creep activation energy decreases linearly with the current density (as expected by Kim-Anderson model); and the activation energy increases linearly with the thickness of sample when it is thinner than about 1 mm. These features suggest that the vortices in the MgB2_2 are rather rigid, and the pinning and creep can be well described by Kim-Anderson model.Comment: Typo corrected & reference adde
    • …
    corecore