7,425 research outputs found

    Revisiting the BB-physics anomalies in RR-parity violating MSSM

    Full text link
    In recent years, several deviations from the Standard Model predictions in semileptonic decays of BB-meson might suggest the existence of new physics which would break the lepton-flavour universality. In this work, we have explored the possibility of using muon sneutrinos and right-handed sbottoms to solve these BB-physics anomalies simultaneously in RR-parity violating minimal supersymmetric standard model. We find that the photonic penguin induced by exchanging sneutrino can provide sizable lepton flavour universal contribution due to the existence of logarithmic enhancement for the first time. This prompts us to use the two-parameter scenario (C9V,C9U)(C^{\rm V}_9, \, C^{\rm U}_9) to explain bs+b \to s \ell^+ \ell^- anomaly. Finally, the numerical analyses show that the muon sneutrinos and right-handed sbottoms can explain bs+b \to s \ell^+ \ell^- and R(D())R(D^{(\ast)}) anomalies simultaneously, and satisfy the constraints of other related processes, such as BK()ννˉB \to K^{(\ast)} \nu \bar\nu decays, BsBˉsB_s-\bar B_s mixing, ZZ decays, as well as D0μ+μD^0 \to \mu^+ \mu^-, τμρ0\tau \to \mu \rho^0, BτνB \to \tau \nu, DsτνD_s \to \tau \nu, τKν\tau \to K \nu, τμγ\tau \to \mu \gamma, and τμμμ\tau \to \mu\mu\mu decays.Comment: 10 pages, 8 figures, matches to the version published in EPJ

    Improving Person Re-identification by Attribute and Identity Learning

    Full text link
    Person re-identification (re-ID) and attribute recognition share a common target at learning pedestrian descriptions. Their difference consists in the granularity. Most existing re-ID methods only take identity labels of pedestrians into consideration. However, we find the attributes, containing detailed local descriptions, are beneficial in allowing the re-ID model to learn more discriminative feature representations. In this paper, based on the complementarity of attribute labels and ID labels, we propose an attribute-person recognition (APR) network, a multi-task network which learns a re-ID embedding and at the same time predicts pedestrian attributes. We manually annotate attribute labels for two large-scale re-ID datasets, and systematically investigate how person re-ID and attribute recognition benefit from each other. In addition, we re-weight the attribute predictions considering the dependencies and correlations among the attributes. The experimental results on two large-scale re-ID benchmarks demonstrate that by learning a more discriminative representation, APR achieves competitive re-ID performance compared with the state-of-the-art methods. We use APR to speed up the retrieval process by ten times with a minor accuracy drop of 2.92% on Market-1501. Besides, we also apply APR on the attribute recognition task and demonstrate improvement over the baselines.Comment: Accepted to Pattern Recognition (PR

    Damped nonlinear Schr\"odinger equation with Stark effect

    Full text link
    We study the L2L^2-critical damped NLS with a Stark potential. We prove that the threshold for global existence and finite time blowup of this equation is given by Q2\|Q\|_2, where QQ is the unique positive radial solution of ΔQ+Q4/dQ=Q\Delta Q + |Q|^{4/d} Q = Q in H1(Rd)H^1(\mathbb{R}^d). Moreover, in any small neighborhood of QQ, there exists an initial data u0u_0 above the ground state such that the solution flow admits the log-log blowup speed. This verifies the structural stability for the ``log\log-log\log law'' associated to the NLS mechanism under the perturbation by a damping term and a Stark potential. The proof of our main theorem is based on the Avron-Herbst formula and the analogous result for the unperturbed damped NLS.Comment: 13 page
    corecore