38 research outputs found

    Sciences for The 2.5-meter Wide Field Survey Telescope (WFST)

    Full text link
    The Wide Field Survey Telescope (WFST) is a dedicated photometric survey facility under construction jointly by the University of Science and Technology of China and Purple Mountain Observatory. It is equipped with a primary mirror of 2.5m in diameter, an active optical system, and a mosaic CCD camera of 0.73 Gpix on the main focus plane to achieve high-quality imaging over a field of view of 6.5 square degrees. The installation of WFST in the Lenghu observing site is planned to happen in the summer of 2023, and the operation is scheduled to commence within three months afterward. WFST will scan the northern sky in four optical bands (u, g, r, and i) at cadences from hourly/daily to semi-weekly in the deep high-cadence survey (DHS) and the wide field survey (WFS) programs, respectively. WFS reaches a depth of 22.27, 23.32, 22.84, and 22.31 in AB magnitudes in a nominal 30-second exposure in the four bands during a photometric night, respectively, enabling us to search tremendous amount of transients in the low-z universe and systematically investigate the variability of Galactic and extragalactic objects. Intranight 90s exposures as deep as 23 and 24 mag in u and g bands via DHS provide a unique opportunity to facilitate explorations of energetic transients in demand for high sensitivity, including the electromagnetic counterparts of gravitational-wave events detected by the second/third-generation GW detectors, supernovae within a few hours of their explosions, tidal disruption events and luminous fast optical transients even beyond a redshift of 1. Meanwhile, the final 6-year co-added images, anticipated to reach g about 25.5 mag in WFS or even deeper by 1.5 mag in DHS, will be of significant value to general Galactic and extragalactic sciences. The highly uniform legacy surveys of WFST will also serve as an indispensable complement to those of LSST which monitors the southern sky.Comment: 46 pages, submitted to SCMP

    Poleward-Moving Black Aurora Associated with Impulse-Excited Field-Line Resonances in the Dawnside Sector: THEMIS and Ground Observations

    No full text
    The black aurora is a distinct phenomenon characterized by spatially well-defined regions where the diffuse auroral luminosity decreases notably. Typically, black auroras present as arcs moving at lower velocities, patches with higher moving speeds, and arc segments. However, the mechanism behind black auroras remains unclear. In this paper, we present a novel observation of a poleward-moving black auroral arc associated with impulse-excited field-line resonances in the dawnside sector from the multi-spacecraft THEMIS (Time History of Events and Macroscale Interactions during Substorms) mission, equivalent ionospheric currents, and a conjugated all-sky imager. The field-line resonance velocities exhibit periodic vorticity, which correspond to periodic poleward-moving bands of enhanced FACs. Based on the relatively large reduction in luminosity, we conclude that the poleward-moving black auroral arc was most likely caused by downward FACs associated with field-line resonances

    Equatorward Moving Auroral Arcs Associated with Impulse-Excited Field Line Resonance

    No full text
    The theory of equatorward moving east-west elongated auroral arcs associated with field line resonance (FLR) has been proposed for decades. However, confirming this theory requires in-situ observations of FLR within the magnetosphere and simultaneous all-sky imager observations of equatorward moving auroral arcs near satellite footpoints. In this study, we present the first observations of multiple equatorward moving auroral arcs related to impulse-excited FLR, using datasets from the WIND, Geotail satellites, and an all-sky imager at China’s Zhongshan Station (ZHS) in Antarctica. In the presented event, the ultra-low-frequency waves associated with solar wind dynamic pressure pulse was mainly toroidal mode, which is consistent with the theory that the toroidal mode waves usually related with external source. The all-sky imager located in Zhongshan station recorded several equatorward moving auroral arcs, followed by reverse propagating ones. The latitudinal width of the equatorward moving auroral arcs was on the order of 25 km and had an average equatorward propagation of ~0.37 km/s, which is very similar to the value from previous work. To better illustrate the observed evolution of auroral arcs related with the FLRs we proposed a simple model to evaluate the FACs induced by the FLRs in different latitudes. The latitudinal distribution evolution of FACs agrees well with the ground-based optical observations
    corecore