42 research outputs found

    Dynamic Extreme Aneuploidy (DEA) in the vegetable pathogen Phytophthora capsici and the potential for rapid asexual evolution

    Get PDF
    Oomycete plant pathogens are difficult to control and routine genetic research is challeng- ing. A major problem is instability of isolates. Here we characterize \u3e600 field and single zoospore isolates of Phytophthora capsici for inheritance of mating type, sensitivity to mefe- noxam, chromosome copy number and heterozygous allele frequencies. The A2 mating type was highly unstable with 26% of 241 A2 isolates remaining A2. The A1 mating type was stable. Isolates intermediately resistant to mefenoxam produced fully resistant single-spore progeny. Sensitive isolates remained fully sensitive. Genome re-sequencing of single zoo- spore isolates revealed extreme aneuploidy; a phenomenon dubbed Dynamic Extreme Aneuploidy (DEA). DEA is characterized by the asexual inheritance of diverse intra-genomic combinations of chromosomal ploidy ranging from 2N to 3N and heterozygous allele fre- quencies that do not strictly correspond to ploidy. Isolates sectoring on agar media showed dramatically altered heterozygous allele frequencies. DEA can explain the rapid increase of advantageous alleles (e.g. drug resistance), mating type switches and copy neutral loss of heterozygosity (LOH). Although the mechanisms driving DEA are unknown, it can play an important role in adaptation and evolution and seriously hinders all aspects of P. capsici research

    Dynamic Extreme Aneuploidy (DEA) in the vegetable pathogen Phytophthora capsici and the potential for rapid asexual evolution.

    No full text
    Oomycete plant pathogens are difficult to control and routine genetic research is challenging. A major problem is instability of isolates. Here we characterize >600 field and single zoospore isolates of Phytophthora capsici for inheritance of mating type, sensitivity to mefenoxam, chromosome copy number and heterozygous allele frequencies. The A2 mating type was highly unstable with 26% of 241 A2 isolates remaining A2. The A1 mating type was stable. Isolates intermediately resistant to mefenoxam produced fully resistant single-spore progeny. Sensitive isolates remained fully sensitive. Genome re-sequencing of single zoospore isolates revealed extreme aneuploidy; a phenomenon dubbed Dynamic Extreme Aneuploidy (DEA). DEA is characterized by the asexual inheritance of diverse intra-genomic combinations of chromosomal ploidy ranging from 2N to 3N and heterozygous allele frequencies that do not strictly correspond to ploidy. Isolates sectoring on agar media showed dramatically altered heterozygous allele frequencies. DEA can explain the rapid increase of advantageous alleles (e.g. drug resistance), mating type switches and copy neutral loss of heterozygosity (LOH). Although the mechanisms driving DEA are unknown, it can play an important role in adaptation and evolution and seriously hinders all aspects of P. capsici research

    Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in Botrytis cinerea from Shanghai Province in China

    No full text
    Botrytis cinerea is a destructive necrotrophic pathogen that can infect many plant species. The control of gray mold mainly relies on the application of fungicides, and the fungicide fludioxonil is widely used in China. However, the field fungicide resistance of B. cinerea to this compound is largely unknown. In this study, B. cinerea isolates were collected from different districts of Shanghai province in 2015–2017, and their sensitivity to fludioxonil was determined. A total of 65 out of 187 field isolates (34.76%) were found to be resistant to fludioxonil, with 36 (19.25%) showing high resistance and 29 (15.51%) showing moderate resistance. Most of these resistant isolates also showed resistance to iprodione, and some developed resistance to fungicides of other modes of action. AtrB gene expression, an indicator of MDR1 and MDR1h phenotypes, was not dramatically increased in the tested resistant isolates. Biological characteristics and osmotic sensitivity investigations showed that the fitness of resistant isolates was lower than that of sensitive ones. To investigate the molecular resistance mechanisms of B. cinerea to fludioxonil, the Bos1 amino acid sequences were compared between resistant and sensitive isolates. Resistant isolates revealed either no amino acid variations or the mutations I365S, I365N, Q369P/N373S, and N373S

    Resistance to the novel fungicide pyrimorph in Phytophthora capsici: risk assessment and detection of point mutations in CesA3 that confer resistance.

    Get PDF
    Pyrimorph is a novel fungicide with high activity against the plant pathogen Phytophthora capsici. We investigated the risk that P. capsici can develop resistance to pyrimorph. The baseline sensitivities of 226 P. capsici isolates, tested by mycelial growth inhibition, showed a unimodal distribution with a mean EC(50) value of 1.4261 (± 0.4002) µg/ml. Twelve pyrimorph-resistant mutants were obtained by repeated exposure to pyrimorph in vitro with a frequency of approximately 1 × 10(-4). The resistance factors of the mutants ranged from 10.67 to 56.02. Pyrimorph resistance of the mutants was stable after 10 transfers on pyrimorph-free medium. Fitness in sporulation, cystospore germination, and pathogenicity in the pyrimorph-resistant mutants was similar to or less than that in the parental wild-type isolates. On detached pepper leaves and pepper plants treated with the recommended maximum dose of pyrimorph, however, virulence was greater for mutants with a high level of pyrimorph resistance than for the wild type. The results suggest that the risk of P. capsici developing resistance to pyrimorph is low to moderate. Among mutants with a high level of pyrimorph resistance, EC(50) values for pyrimorph and CAA fungicides flumorph, dimethomorph, and mandipropamid were positively correlated. This indicated that point mutations in cellulose synthase 3 (CesA3) may confer resistance to pyrimorph. Comparison of CesA3 in isolates with a high level of pyrimorph resistance and parental isolates showed that an amino acid change from glutamine to lysine at position 1077 resulted in stable, high resistance in the mutants. Based on the point mutations, an allele-specific PCR method was developed to detect pyrimorph resistance in P. capsici populations

    Characterization of the Field Fludioxonil Resistance and Its Molecular Basis in <i>Botrytis cinerea</i> from Shanghai Province in China

    No full text
    Botrytis cinerea is a destructive necrotrophic pathogen that can infect many plant species. The control of gray mold mainly relies on the application of fungicides, and the fungicide fludioxonil is widely used in China. However, the field fungicide resistance of B. cinerea to this compound is largely unknown. In this study, B. cinerea isolates were collected from different districts of Shanghai province in 2015–2017, and their sensitivity to fludioxonil was determined. A total of 65 out of 187 field isolates (34.76%) were found to be resistant to fludioxonil, with 36 (19.25%) showing high resistance and 29 (15.51%) showing moderate resistance. Most of these resistant isolates also showed resistance to iprodione, and some developed resistance to fungicides of other modes of action. AtrB gene expression, an indicator of MDR1 and MDR1h phenotypes, was not dramatically increased in the tested resistant isolates. Biological characteristics and osmotic sensitivity investigations showed that the fitness of resistant isolates was lower than that of sensitive ones. To investigate the molecular resistance mechanisms of B. cinerea to fludioxonil, the Bos1 amino acid sequences were compared between resistant and sensitive isolates. Resistant isolates revealed either no amino acid variations or the mutations I365S, I365N, Q369P/N373S, and N373S

    Metabolic Profiling to Identify the Latent Infection of Strawberry by

    No full text
    In plant-pathogen interaction systems, plant metabolism is usually agitated in the early stages of infection and much before visible symptoms appear. To identify the latent infection of strawberry by Botrytis cinerea by metabolome profiling, a metabolomics method based on gas chromatography and mass spectrometry was applied to identify the affected metabolites and discriminate diseased plants from healthy ones. An orthogonal partial least squares (OPLS) score plot showed that the metabolic profiling well separated B. cinerea -infected strawberry plants at 2, 5, and 7 days after infection from non-infected healthy plants. Combined analysis of variance (ANOVA) and OPLS analysis revealed candidate biomarkers of plant resistance and of infection and expansion of the pathogen in the plants. Among them, hexadecanoic acid, octadecanoic acid, sucrose, β-lyxopyranose, melibiose, and 1,1,4a-Trimethyl-5,6-dimethylenedecahydronaphthalene were closely related to the early stage of disease development when symptoms were not visible. A discrimination method that could distinguish Botrytis gray mold diseased strawberry plants from healthy ones was established based on the partial least squares discriminant analysis (PLS-DA) model with a correct recognition accuracy of 100%. This research offers a good application of metabolome profiling for early diagnosis of plant disease and interaction mechanism exploration
    corecore