3,694 research outputs found

    20-O-β-d-Xylopyranos­yl(1→6)-β-d-glucopyranosyl-20(S)-protopanaxadiol methanol solvate

    Get PDF
    The title compound, C41H70O12·CH4O, was prepared by microbial transformation. Within the steroid skeleton of the mol­ecule, three six-membered rings exhibit a chair conformation, while the five -membered ring adopts an envelope conformation. The two pyranosyl rings also adopt chair conformations. The mol­ecules are held together by an extensive O—H⋯O hydrogen-bonding network

    Solvatochromic Parameters of the Binary Mixtures of Imidazolium Chloride Ionic Liquid Plus Molecular Solvent

    Get PDF
    Imidazolium-based chloride ionic liquids (ILs) have exhibited remarkable performance in several important applications such as biomass dissolution and extraction, but their large viscosity is a non-negligible problem. Adding molecular co-solvents into chloride ILs is effective in reducing viscosity; nevertheless, understanding of the accompanied change of thermodynamic polarity is quite few. Therefore, in this work we reported three Kamlet-Taft solvatochromic parameters, including dipolarity/polarizability π*), hydrogen-bond acidity (α) and hydrogen-bond basicity (β), for the binary mixtures of several imidazolium-based chloride ILs plus either dipolar protic solvents (water and methanol) or dipolar aprotic solvents (dimethyl sulfoxide, N,N-dimethylformamide and acetonitrile). The results demonstrated that those parameters could be altered by the structure of IL and type of co-solvent owing to the solute-solvent and solvent-solvent interactions. The structure of alkyl chain of cation had considerable impact on the π* variation of IL aqueous solution against IL concentration but hardly affected other mixtures. Moreover, remarkable preferential solvation of probes was observed for β and α in the mixtures of IL and dipolar aprotic co-solvents, whereas the hydrogen-bond interactions between IL and dipolar protic co-solvent enabled the preferential solvation to be alleviated and resulted in more linear variation of β and α against the molar fraction of IL. The results not only contribute to a better understanding of the effect of co-solvent on imidazolium-based chloride ILs, but also are instructive for improving the thermodynamic performance of IL-based applications via providing IL+co-solvent mixtures with desirable physicochemical properties

    Iron(III) bromide catalyzed bromination of 2-tert-butylpyrene and corresponding position-dependent aryl-functionalized pyrene derivatives

    Get PDF
    The present work probes the bromination mechanism of 2-tert-butylpyrene (1), which regioselectively affords mono-, di-, tri- and tetra-bromopyrenes, by theoretical calculation and detailed experimental methods. The bromine atom may be directed to the K-region (positions 5- and 9-) instead of the more reactive 6- and 8-positions in the presence of iron powder. In this process, FeBr₃ plays a significant role to release steric hindrance or lower the activation energy of the rearrangement. The intermediate bromopyrene derivatives were isolated and confirmed by ¹H NMR spectrometry, mass spectroscopy and elemental analysis. Further evidence on substitution position originated from a series of aryl substituted pyrene derivatives, which were obtained from the corresponding bromopyrenes on reaction with 4-methoxy-phenylboronic acid by a Suzuki–Miyaura cross-coupling reaction. All position-dependent aryl-functionalized pyrene derivatives are characterized by single X-ray diffraction, ¹H/¹³C NMR, FT-IR and MS, and offered straightforward evidence to support our conclusion. Furthermore, the photophysical properties of a series of compounds were confirmed by fluorescence and absorption, as well as by fluorescence lifetime measurements
    corecore