18 research outputs found

    Differential recruitment of coregulators to the RORA promoter adds another layer of complexity to gene (dys)regulation by sex hormones in autism

    Get PDF
    Background Our independent cohort studies have consistently shown the reduction of the nuclear receptor RORA (retinoic acid-related orphan receptor-alpha) in lymphoblasts as well as in brain tissues from individuals with autism spectrum disorder (ASD). Moreover, we have found that RORA regulates the gene for aromatase, which converts androgen to estrogen, and that male and female hormones regulate RORA in opposite directions, with androgen suppressing RORA, suggesting that the sexually dimorphic regulation of RORA may contribute to the male bias in ASD. However, the molecular mechanisms through which androgen and estrogen differentially regulate RORA are still unknown. Methods Here we use functional knockdown of hormone receptors and coregulators with small interfering RNA (siRNA) to investigate their involvement in sex hormone regulation of RORA in human neuronal cells. Luciferase assays using a vector containing various RORA promoter constructs were first performed to identify the promoter regions required for inverse regulation of RORA by male and female hormones. Sequential chromatin immunoprecipitation methods followed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses of RORA expression in hormone-treated SH-SY5Y cells were then utilized to identify coregulators that associate with hormone receptors on the RORA promoter. siRNA-mediated knockdown of interacting coregulators was performed followed by qRT-PCR analyses to confirm the functional requirement of each coregulator in hormone-regulated RORA expression. Results Our studies demonstrate the direct involvement of androgen receptor (AR) and estrogen receptor (ER) in the regulation of RORA by male and female hormones, respectively, and that the promoter region between ?10055 bp and ?2344 bp from the transcription start site of RORA is required for the inverse hormonal regulation. We further show that AR interacts with SUMO1, a reported suppressor of AR transcriptional activity, whereas ER? interacts with the coactivator NCOA5 on the RORA promoter. siRNA-mediated knockdown of SUMO1 and NCOA5 attenuate the sex hormone effects on RORA expression. Conclusions AR and SUMO1 are involved in the suppression RORA expression by androgen, while ER? and NCOA5 collaborate in the up-regulation of RORA by estrogen. While this study offers a better understanding of molecular mechanisms involved in sex hormone regulation of RORA, it also reveals another layer of complexity with regard to gene regulation in ASD. Inasmuch as coregulators are capable of interacting with a multitude of transcription factors, aberrant expression of coregulator proteins, as we have seen previously in lymphoblasts from individuals with ASD, may contribute to the polygenic nature of gene dysregulation in ASD

    The Expanding Genomic Landscape of Autism: Discovering the \u27Forest\u27 Beyond the \u27Trees\u27

    Get PDF
    Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by significant deficits in reciprocal social interactions, impaired communication, and restricted, repetitive behaviors. Because ASDs are among the most heritable of neuropsychiatric disorders, much of autism research has focused on the search for genetic variants in protein-coding genes (i.e., the trees ). However, no single gene can account for more than 1% of the cases of ASD. Yet, genome-wide association studies have often identified statistically significant associations of genetic variations in regions of DNA that do not code for proteins (i.e., intergenic regions). There is increasing evidence that such noncoding regions are actively transcribed and may participate in the regulation of genes, including genes on different chromosomes. This article summarizes evidence which suggests that the research spotlight needs to be expanded to encompass far-reaching gene-regulatory mechanisms which include a variety of epigenetic modifications as well as noncoding RNA (i.e., the forest ). Given that noncoding RNA represents over 90% of the transcripts in most cells, we may be observing just the tip of the iceberg or the edge of the forest in the genomic landscape of autism

    From genes to environment: using integrative genomics to build a systems-level understanding of autism spectrum disorders

    Full text link
    Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that affect an estimated 1 in 110 individuals. Although there is a strong genetic component associated with these disorders, this review focuses on the multi-factorial nature of ASD and how different genome-wide (genomic) approaches contribute to our understanding of autism. Emphasis is placed on the need to study defined ASD phenotypes as well as to integrate large-scale ‘omics’ data in order to develop a “systems level” perspective of ASD which, in turn, is necessary to allow predictions regarding responses to specific perturbations and interventions

    Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder

    Get PDF
    BACKGROUND: We have recently identified the nuclear hormone receptor RORA (retinoic acid-related orphan receptor-alpha) as a novel candidate gene for autism spectrum disorder (ASD). Our independent cohort studies have consistently demonstrated the reduction of RORA transcript and/or protein levels in blood-derived lymphoblasts as well as in the postmortem prefrontal cortex and cerebellum of individuals with ASD. Moreover, we have also shown that RORA has the potential to be under negative and positive regulation by androgen and estrogen, respectively, suggesting the possibility that RORA may contribute to the male bias of ASD. However, little is known about transcriptional targets of this nuclear receptor, particularly in humans. METHODS: Here we identify transcriptional targets of RORA in human neuronal cells on a genome-wide level using chromatin immunoprecipitation (ChIP) with an anti-RORA antibody followed by whole-genome promoter array (chip) analysis. Selected potential targets of RORA were then validated by an independent ChIP followed by quantitative PCR analysis. To further demonstrate that reduced RORA expression results in reduced transcription of RORA targets, we determined the expression levels of the selected transcriptional targets in RORA-deficient human neuronal cells, as well as in postmortem brain tissues from individuals with ASD who exhibit reduced RORA expression. RESULTS: The ChIP-on-chip analysis reveals that RORA1, a major isoform of RORA protein in human brain, can be recruited to as many as 2,764 genomic locations corresponding to promoter regions of 2,544 genes across the human genome. Gene ontology analysis of this dataset of genes that are potentially directly regulated by RORA1 reveals statistically significant enrichment in biological functions negatively impacted in individuals with ASD, including neuronal differentiation, adhesion and survival, synaptogenesis, synaptic transmission and plasticity, and axonogenesis, as well as higher level functions such as development of the cortex and cerebellum, cognition, memory, and spatial learning. Independent ChIP-quantitative PCR analyses confirm binding of RORA1 to promoter regions of selected ASD-associated genes, including A2BP1, CYP19A1, ITPR1, NLGN1, and NTRK2, whose expression levels (in addition to HSD17B10) are also decreased in RORA1-repressed human neuronal cells and in prefrontal cortex tissues from individuals with ASD. CONCLUSIONS: Findings from this study indicate that RORA transcriptionally regulates A2BP1, CYP19A1, HSD17B10, ITPR1, NLGN1, and NTRK2, and strongly suggest that reduction of this sex hormone-sensitive nuclear receptor in the brain causes dysregulated expression of these ASD-relevant genes as well as their associated pathways and functions which, in turn, may contribute to the underlying pathobiology of ASD

    Developing a Predictive Gene Classifier for Autism Spectrum Disorders Based upon Differential Gene Expression Profiles of Phenotype Subgroups

    Full text link
    Autism spectrum disorders (ASD) are neurodevelopmental disorders which are currently diagnosed solely on the basis of abnormal stereotyped behavior as well as observable deficits in communication and social functioning. Although a variety of candidate genes have been identified on the basis of genetic analyses and up to 20% of ASD cases can be collectively associated with a genetic abnormality, no single gene or genetic variant is applicable to more than 1-2 percent of the general ASD population. In this report, we apply class prediction algorithms to gene expression profiles of lymphoblastoid cell lines (LCL) from several phenotypic subgroups of idiopathic autism defined by cluster analyses of behavioral severity scores on the Autism Diagnostic Interview-Revised diagnostic instrument for ASD. We further demonstrate that individuals from these ASD subgroups can be distinguished from nonautistic controls on the basis of limited sets of differentially expressed genes with a predicted classification accuracy of up to 94% and sensitivities and specificities of ~90% or better, based on support vector machine analyses with leave-one-out validation. Validation of a subset of the classifier genes by high-throughput quantitative nuclease protection assays with a new set of LCL samples derived from individuals in one of the phenotypic subgroups and from a new set of controls resulted in an overall class prediction accuracy of ~82%, with ~90% sensitivity and 75% specificity. Although additional validation with a larger cohort is needed, and effective clinical translation must include confirmation of the differentially expressed genes in primary cells from cases earlier in development, we suggest that such panels of genes, based on expression analyses of phenotypically more homogeneous subgroups of individuals with ASD, may be useful biomarkers for diagnosis of subtypes of idiopathic autism

    Investigation of sex differences in the expression of RORA and its transcriptional targets in the brain as a potential contributor to the sex bias in autism

    Get PDF
    Background Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by significant impairment in reciprocal social interactions and communication coupled with stereotyped, repetitive behaviors and restricted interests. Although genomic and functional studies are beginning to reveal some of the genetic complexity and underlying pathobiology of ASD, the consistently reported male bias of ASD remains an enigma. We have recently proposed that retinoic acid-related orphan receptor alpha (RORA), which is reduced in the brain and lymphoblastoid cell lines of multiple cohorts of individuals with ASD and oppositely regulated by male and female hormones, might contribute to the sex bias in autism by differentially regulating target genes, including CYP19A1 (aromatase), in a sex-dependent manner that can also lead to elevated testosterone levels, a proposed risk factor for autism. Methods In this study, we examine sex differences in RORA and aromatase protein levels in cortical tissues of unaffected and affected males and females by re-analyzing pre-existing confocal immunofluorescence data from our laboratory. We further investigated the expression of RORAand its correlation with several of its validated transcriptional targets in the orbital frontal cortex and cerebellum as a function of development using RNAseq data from the BrainSpan Atlas of the Developing Human Brain. In a pilot study, we also analyzed the expression of Rora and the same transcriptional targets in the cortex and cerebellum of adult wild-type male and female C57BL/6 mice. Results Our findings suggest that Rora/RORA and several of its transcriptional targets may exhibit sexually dimorphic expression in certain regions of the brain of both mice and humans. Interestingly, the correlation coefficients between Rora expression and that of its targets are much higher in the cortex of male mice relative to that of female mice. A strong positive correlation between the levels of RORA and aromatase proteins is also seen in the cortex of control human males and females as well as ASD males, but not ASD females. Conclusions Based on these studies, we suggest that disruption of Rora/RORA expression may have a greater impact on males, since sex differences in the correlation of RORA and target gene expression indicate that RORA-deficient males may experience greater dysregulation of genes relevant to ASD in certain brain regions during development

    Investigation of epigenetic regulatory networks associated with autism spectrum disorder (ASD) by integrated global LINE-1 methylation and gene expression profiling analyses.

    Full text link
    BACKGROUND:The exact cause and mechanisms underlying the pathobiology of autism spectrum disorder (ASD) remain unclear. Dysregulation of long interspersed element-1 (LINE-1) has been reported in the brains of ASD-like mutant mice and ASD brain tissues. However, the role and methylation of LINE-1 in individuals with ASD remain unclear. In this study, we aimed to investigate whether LINE-1 insertion is associated with differentially expressed genes (DEGs) and to assess LINE-1 methylation in ASD. METHODS:To identify DEGs associated with LINE-1 in ASD, we reanalyzed previously published transcriptome profiles and overlapped them with the list of LINE-1-containing genes from the TranspoGene database. An Ingenuity Pathway Analysis (IPA) of DEGs associated with LINE-1 insertion was conducted. DNA methylation of LINE-1 was assessed via combined bisulfite restriction analysis (COBRA) of lymphoblastoid cell lines from ASD individuals and unaffected individuals, and the methylation levels were correlated with the expression levels of LINE-1 and two LINE-1-inserted DEGs, C1orf27 and ARMC8. RESULTS:We found that LINE-1 insertion was significantly associated with DEGs in ASD. The IPA showed that LINE-1-inserted DEGs were associated with ASD-related mechanisms, including sex hormone receptor signaling and axon guidance signaling. Moreover, we observed that the LINE-1 methylation level was significantly reduced in lymphoblastoid cell lines from ASD individuals with severe language impairment and was inversely correlated with the transcript level. The methylation level of LINE-1 was also correlated with the expression of the LINE-1-inserted DEG C1orf27 but not ARMC8. CONCLUSIONS:In ASD individuals with severe language impairment, LINE-1 methylation was reduced and correlated with the expression levels of LINE-1 and the LINE-1-inserted DEG C1orf27. Our findings highlight the association of LINE-1 with DEGs in ASD blood samples and warrant further investigation. The molecular mechanisms of LINE-1 and the effects of its methylation in ASD pathobiology deserve further study
    corecore