25 research outputs found

    (R,R)-4,4′-Dibromo-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methyl­idyne)]diphenol

    Get PDF
    The mol­ecule of the title compound, C20H20Br2N2O2, lies on a twofold axis. It contains two stereogenic C atoms with R chirality and thus it is the enatiomerically pure R,R-diastereomer. There is an intra­molecular O—H⋯N hydrogen bond

    Blockchain-Based Water-Energy Transactive Management with Spatial-Temporal Uncertainties

    Get PDF
    Water resources are vital to the energy conversion process but few efforts have been devoted to the joint optimization problem which is fundamentally critical to the water-energy nexus for small-scale or remote energy systems (e.g., energy hubs). Traditional water and energy trading mechanisms depend on centralized authorities and cannot preserve security and privacy effectively. Also, their transaction process cannot be verified and is subject to easy tampering and frequent exposures to cyberattacks, forgery, and network failures. Toward that end, water-energy hubs (WEHs) offers a promising way to analyse water-energy nexus for greater resource utilization efficiency. We propose a two-stage blockchain-based transactive management method for multiple, interconnected WEHs. Our method considers peer-topeer (P2P) trading and demand response, and leverages blockchain to create a secure trading environment. It features auditing and resource transaction record management via system aggregators enabled by a consortium blockchain, and entails spatial-temporal distributionally robust optimization (DRO) for renewable generation and load uncertainties. A spatial-temporal ambiguity set is incorporated in DRO to characterize the spatial-temporal dependencies of the uncertainties in distributed renewable generation and load demand. We conduct a simulation-based evaluation that includes robust optimization and the moment-based DRO as benchmarks. The results reveal that our method is consistently more effective than both benchmarks. Key findings include i) our method reduces conservativeness with lower WEH trading and operation costs, and achieves important performance improvements by up to 6.1%; and ii) our method is efficient and requires 18.7% less computational time than the moment-based DRO. Overall, this study contributes to the extant literature by proposing a novel two-stage blockchain-based WEH transaction method, developing a realistic spatialtemporal ambiguity set to effectively hedge against the uncertainties for distributed renewable generation and load demand, and producing empirical evidence suggesting its greater effectiveness and values than several prevalent methods.</p

    Blockchain-Based Water-Energy Transactive Management with Spatial-Temporal Uncertainties

    Get PDF
    Water resources are vital to the energy conversion process but few efforts have been devoted to the joint optimization problem which is fundamentally critical to the water-energy nexus for small-scale or remote energy systems (e.g., energy hubs). Traditional water and energy trading mechanisms depend on centralized authorities and cannot preserve security and privacy effectively. Also, their transaction process cannot be verified and is subject to easy tampering and frequent exposures to cyberattacks, forgery, and network failures. Toward that end, water-energy hubs (WEHs) offers a promising way to analyse water-energy nexus for greater resource utilization efficiency. We propose a two-stage blockchain-based transactive management method for multiple, interconnected WEHs. Our method considers peer-topeer (P2P) trading and demand response, and leverages blockchain to create a secure trading environment. It features auditing and resource transaction record management via system aggregators enabled by a consortium blockchain, and entails spatial-temporal distributionally robust optimization (DRO) for renewable generation and load uncertainties. A spatial-temporal ambiguity set is incorporated in DRO to characterize the spatial-temporal dependencies of the uncertainties in distributed renewable generation and load demand. We conduct a simulation-based evaluation that includes robust optimization and the moment-based DRO as benchmarks. The results reveal that our method is consistently more effective than both benchmarks. Key findings include i) our method reduces conservativeness with lower WEH trading and operation costs, and achieves important performance improvements by up to 6.1%; and ii) our method is efficient and requires 18.7% less computational time than the moment-based DRO. Overall, this study contributes to the extant literature by proposing a novel two-stage blockchain-based WEH transaction method, developing a realistic spatialtemporal ambiguity set to effectively hedge against the uncertainties for distributed renewable generation and load demand, and producing empirical evidence suggesting its greater effectiveness and values than several prevalent methods.</p

    Two-stage co-optimization for utility-social systems with social-aware P2P trading

    Get PDF
    Effective utility system management is fundamental and critical for ensuring the normal activities, operations, and services in cities and urban areas. In that regard, the advanced information and communication technologies underpinning smart cities enable close linkages and coordination of different subutility systems, which is now attracting research attention. To increase operational efficiency, we propose a two-stage optimal co-management model for an integrated urban utility system comprised of water, power, gas, and heating systems, namely, integrated water-energy hubs (IWEHs). The proposed IWEH facilitates coordination between multienergy and water sectors via close energy conversion and can enhance the operational efficiency of an integrated urban utility system. In particular, we incorporate social-aware peer-to-peer (P2P) resource trading in the optimization model, in which operators of an IWEH can trade energy and water with other interconnected IWEHs. To cope with renewable generation and load uncertainties and mitigate their negative impacts, a two-stage distributionally robust optimization (DRO) is developed to capture the uncertainties, using a semidefinite programming reformulation. To demonstrate our model’s effectiveness and practical values, we design representative case studies that simulate four interconnected IWEH communities. The results show that DRO is more effective than robust optimization (RO) and stochastic optimization (SO) for avoiding excessive conservativeness and rendering practical utilities, without requiring enormous data samples. This work reveals a desirable methodological approach to optimize the water–energy–social nexus for increased economic and system-usage efficiency for the entire (integrated) urban utility system. Furthermore, the proposed model incorporates social participations by citizens to engage in urban utility management for increased operation efficiency of cities and urban areas

    Socially governed energy hub trading enabled by blockchain-based transactions

    Get PDF
    Decentralized trading schemes involving energy prosumers have prevailed in recent years. Such schemes provide a pathway for increased energy efficiency and can be enhanced by the use of blockchain technology to address security concerns in decentralized trading. To improve transaction security and privacy protection while ensuring desirable social governance, this article proposes a novel two-stage blockchain-based operation and trading mechanism to enhance energy hubs connected with integrated energy systems (IESs). This mechanism includes multienergy aggregators (MAGs) that use a consortium blockchain and its enabled proof-of-work (PoW) to transfer and audit transaction records, with social governance principles for guiding prosumers’ decision-making in the peer-to-peer (P2P) transaction management process. The uncertain nature of renewable generation and load demand are adequately modeled in the two-stage Wasserstein-based distributionally robust optimization (DRO). The practicality of the proposed mechanism is illustrated by several case studies that jointly show its ability to handle an increased renewable generation capacity, achieve a 16.7% saving in the audit cost, and facilitate 2.4% more P2P interactions. Overall, the proposed two-stage blockchain-based trading mechanism provides a practical trading scheme and can reduce redundant trading amounts by 6.5%, leading to a further reduction of the overall operation cost. Compared to the state-of-the-art benchmark methods, our mechanism exhibits significant operation cost reduction and ensures social governance and transaction security for IES and energy hubs

    Cynaroside ameliorates methotrexate-induced enteritis in rats through inhibiting NLRP3 inflammasome activation

    Get PDF
    IntroductionCynaroside exhibits various biological properties, including anti-inflammatory, antiviral, antitumor, and cardioprotective effects. However, its involvement in methotrexate (MTX)-induced intestinal inflammation remains inadequately understood. Thus, we investigated the impact of cynaroside on MTX-induced intestinal inflammation and its potential mechanisms.MethodsTo assess the protective potential of cynaroside against intestinal inflammation, Sprague-Dawley rats were subjected to a regimen of 7 mg/kg MTX for 3 days, followed by treatment with cynaroside at varying doses (10, 20, or 40 mg/kg). Histopathological evaluations were conducted alongside measurements of inflammatory mediators to elucidate the involvement of the NLRP3 inflammasome in alleviating intestinal inflammation.ResultsAdministration of 7 mg/kg MTX resulted in decreased daily food intake, increased weight loss, and elevated disease activity index in rats. Conversely, treatment with cynaroside at 20 or 40 mg/kg ameliorated the reductions in body weight and daily food intake and suppressed the MTX-induced elevation in the disease activity index. Notably, cynaroside administration at 20 or 40 mg/kg attenuated inflammatory cell infiltration, augmented goblet cell numbers and lowered serum levels of tumor necrosis factor-α, interleukin (IL)-1β, and IL-18, as well as the CD68-positive cell rate in the intestines of MTX-induced rats. Furthermore, cynaroside downregulated the expression levels of NLRP3, cleaved caspase 1, and cleaved IL-1β in MTX-induced rats.DiscussionCollectively, our findings indicated that cymaroside alleviates intestinal inflammatory injury by inhibiting the activation of NLRP3 inflammasome in MTX-induced rats

    Anisotropic Compressive Behavior of Functionally Density Graded Aluminum Foam Prepared by Controlled Melt Foaming Process

    No full text
    Aluminum foams with a functionally graded density have exhibited better impact resistance and a better energy absorbing performance than aluminum foams with a uniform density. Nevertheless, the anisotropic compression behavior caused by the graded density has scarcely been studied. In this paper, a density graded aluminum foam (FG) was prepared by a controlled foaming process. The effect of density anisotropy on the mechanical behavior of FGs was investigated under quasi-static compression and a low-velocity impact. Digital image correlation (DIC) and numerical simulation techniques were used to identify deformation mechanisms at both macro and cell levels. Results show that transverse compression on FGs lead to a higher collapse strength but also to a lower energy absorption, due to the significant decrease in densification strain and plateau stress. The deformation behavior of FGs under longitudinal compression was dominated by the progressive extension of the deformation bands. For FGs under transverse compression, the failure mode of specimens was characterized by multiple randomly distributed deformation bands. Moreover, the transverse compression caused more deformation on cells, through tearing and lateral stretching, because of the high lateral strain level in the specimens. It was concluded that the transverse compression of FGs lead to a lower plateau stress and a lower cell usage, thus resulting in a poorer energy absorption efficient; this constitutes a key factor which should be taken into consideration in structural design

    Anchoring Plasmonic Ag@AgCl Nanocrystals onto ZnCo2O4 Microspheres with Enhanced Visible Photocatalytic Activity

    No full text
    Abstract In this work, a comprehensive investigation of the composite Ag@AgCl/ZnCo2O4 microspheres photocatalyst, prepared by a facile two-step method, is presented, and using complementary characterization tools such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X ray spectroscopy (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET). Results show that the composite Ag@AgCl/ZnCo2O4 photocatalyst has good microspheres morphology and high crystalline and its absorption intensity in the whole spectrum range is higher than that of pure ZnCo2O4. It is observed that the specific surface area of the composite Ag@AgCl/ZnCo2O4 photocatalyst and the adsorption efficiency of rhodamine B (RhB) increase as a result of deposition of Ag@AgCl. In the Ag@AgCl/ZnCo2O4 degradation system of RhB, the photocatalytic degradation rate of 0.2Ag@AgCl/ZnCo2O4 becomes 99.4% within 120 min, and RhB is almost completely degraded. The reaction rate constant of composite 0.2Ag@AgCl/ZnCo2O4 photocatalyst is found to be 0.01063 min−1, which is 1.6 times that of Ag@AgCl and 10 times of the minimum value of ZnCo2O4. In addition, the radical capture experiment indicates that, in the reaction system of Ag@AgCl/ZnCo2O4, the main oxidative species of Ag@AgCl/ZnCo2O4 photocatalyst are superoxide anion (O· − 2 − 2) and hole (h+) and not hydroxyl radical (·OH). Based on the results, a Z-scheme plasmon photocatalytic mechanism of Ag@AgCl/ZnCo2O4 composite system is proposed, to elucidate the RhB degradation
    corecore