1,360 research outputs found

    A primer for microbiome time-series analysis

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coenen, A. R., Hu, S. K., Luo, E., Muratore, D., & Weitz, J. S. A primer for microbiome time-series analysis. Frontiers in Genetics, 11, (2020): 310, doi:10.3389/fgene.2020.00310.Time-series can provide critical insights into the structure and function of microbial communities. The analysis of temporal data warrants statistical considerations, distinct from comparative microbiome studies, to address ecological questions. This primer identifies unique challenges and approaches for analyzing microbiome time-series. In doing so, we focus on (1) identifying compositionally similar samples, (2) inferring putative interactions among populations, and (3) detecting periodic signals. We connect theory, code and data via a series of hands-on modules with a motivating biological question centered on marine microbial ecology. The topics of the modules include characterizing shifts in community structure and activity, identifying expression levels with a diel periodic signal, and identifying putative interactions within a complex community. Modules are presented as self-contained, open-access, interactive tutorials in R and Matlab. Throughout, we highlight statistical considerations for dealing with autocorrelated and compositional data, with an eye to improving the robustness of inferences from microbiome time-series. In doing so, we hope that this primer helps to broaden the use of time-series analytic methods within the microbial ecology research community.This work was supported by the Simons Foundation (SCOPE award ID 329108) and the National Science Foundation (NSF Bio Oc 1829636)

    Daily dynamics of contrasting spring algal blooms in Santa Monica Bay (central Southern California Bight)

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ollison, G., Hu, S., Hopper, J., Stewart, B., Smith, J., Beatty, J., Rink, L., & Caron, D. Daily dynamics of contrasting spring algal blooms in Santa Monica Bay (central Southern California Bight). Environmental Microbiology. (2022), https://doi.org/10.1111/1462-2920.16137.Protistan algae (phytoplankton) dominate coastal upwelling ecosystems where they form massive blooms that support the world's most important fisheries and constitute an important sink for atmospheric CO2. Bloom initiation is well understood, but the biotic and abiotic forces that shape short-term dynamics in community composition are still poorly characterized. Here, high-frequency (daily) changes in relative abundance dynamics of the metabolically active protistan community were followed via expressed 18S V4 rRNA genes (RNA) throughout two algal blooms during the spring of 2018 and 2019 in Santa Monica Bay (central Southern California Bight). A diatom bloom formed after wind-driven, nutrient upwelling events in both years, but different taxa dominated each year. Whereas diatoms bloomed following elevated nutrients and declined after depletion each year, a massive dinoflagellate bloom manifested under relatively low inorganic nitrogen conditions following diatom bloom senescence in 2019 but not 2018. Network analysis revealed associations between diatoms and cercozoan putative parasitic taxa and syndinean parasites during 2019 that may have influenced the demise of the diatoms, and the transition to a dinoflagellate-dominated bloom.This work was supported by the National Science Foundation #1136818 (David A. Caron)

    Kir6.1- and SUR2-dependent KATP over-activity disrupts intestinal motility in murine models of Cantu Syndrome

    Get PDF
    CantĎŤ Syndrome (CS), caused by gain-of-function (GOF) mutations in pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunit genes, is frequently accompanied by gastrointestinal (GI) dysmotility, and we describe one CS patient who required an implanted intestinal irrigation system for successful stooling. We used gene-modified mice to assess the underlying KATP channel subunits in gut smooth muscle, and to model the consequences of altered KATP channels in CS gut. We show that Kir6.1/SUR2 subunits underlie smooth muscle KATP channels throughout the small intestine and colon. Knock-in mice, carrying human KCNJ8 and ABCC9 CS mutations in the endogenous loci, exhibit reduced intrinsic contractility throughout the intestine, resulting in death when weaned onto solid food in the most severely affected animals. Death is avoided by weaning onto a liquid gel diet, implicating intestinal insufficiency and bowel impaction as the underlying cause, and GI transit is normalized by treatment with the KATP inhibitor glibenclamide. We thus define the molecular basis of intestinal KATP channel activity, the mechanism by which overactivity results in GI insufficiency, and a viable approach to therapy

    Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Coesel, S. N., Durham, B. P., Groussman, R. D., Hu, S. K., Caron, D. A., Morales, R. L., Ribalet, F., & Armbrust, E. V. Diel transcriptional oscillations of light-sensitive regulatory elements in open-ocean eukaryotic plankton communities. Proceedings of the National Academy of Sciences of the United States of America, 118(6), (2021): e2011038118, https://doi.org/10.1073./pnas.2011038118.The 24-h cycle of light and darkness governs daily rhythms of complex behaviors across all domains of life. Intracellular photoreceptors sense specific wavelengths of light that can reset the internal circadian clock and/or elicit distinct phenotypic responses. In the surface ocean, microbial communities additionally modulate nonrhythmic changes in light quality and quantity as they are mixed to different depths. Here, we show that eukaryotic plankton in the North Pacific Subtropical Gyre transcribe genes encoding light-sensitive proteins that may serve as light-activated transcription factors, elicit light-driven electrical/chemical cascades, or initiate secondary messenger-signaling cascades. Overall, the protistan community relies on blue light-sensitive photoreceptors of the cryptochrome/photolyase family, and proteins containing the Light-Oxygen-Voltage (LOV) domain. The greatest diversification occurred within Haptophyta and photosynthetic stramenopiles where the LOV domain was combined with different DNA-binding domains and secondary signal-transduction motifs. Flagellated protists utilize green-light sensory rhodopsins and blue-light helmchromes, potentially underlying phototactic/photophobic and other behaviors toward specific wavelengths of light. Photoreceptors such as phytochromes appear to play minor roles in the North Pacific Subtropical Gyre. Transcript abundance of environmental light-sensitive protein-encoding genes that display diel patterns are found to primarily peak at dawn. The exceptions are the LOV-domain transcription factors with peaks in transcript abundances at different times and putative phototaxis photoreceptors transcribed throughout the day. Together, these data illustrate the diversity of light-sensitive proteins that may allow disparate groups of protists to respond to light and potentially synchronize patterns of growth, division, and mortality within the dynamic ocean environment.This work was supported by a grant from the Simons Foundation (SCOPE Award 329108 [to E.V.A.]) and XSEDE Grant Allocation OCE160019 (to R.D.G.)

    CRISPR-delivery particles targeting nuclear receptor-interacting protein 1 (Nrip1) in adipose cells to enhance energy expenditure

    Get PDF
    RNA-guided, engineered nucleases derived from the prokaryotic adaptive immune system CRISPR-Cas represent a powerful platform for gene deletion and editing. When used as a therapeutic approach, direct delivery of Cas9 protein and single-guide RNA (sgRNA) could circumvent the safety issues associated with plasmid delivery and therefore represents an attractive tool for precision genome engineering. Gene deletion or editing in adipose tissue to enhance its energy expenditure, fatty acid oxidation, and secretion of bioactive factors through a browning process presents a potential therapeutic strategy to alleviate metabolic disease. Here, we developed CRISPR-delivery particles, denoted CriPs, composed of nano-size complexes of Cas9 protein and sgRNA that are coated with an amphipathic peptide called Endo-Porter that mediates entry into cells. Efficient CRISPR-Cas9-mediated gene deletion of ectopically expressed GFP by CriPs was achieved in multiple cell types, including a macrophage cell line, primary macrophages, and primary pre-adipocytes. Significant GFP loss was also observed in peritoneal exudate cells with minimum systemic toxicity in GFP-expressing mice following intraperitoneal injection of CriPs containing Gfp-targeting sgRNA. Furthermore, disruption of a nuclear co-repressor of catabolism, the Nrip1 gene, in white adipocytes by CriPs enhanced adipocyte browning with a marked increase of uncoupling protein 1 (UCP1) expression. Of note, the CriP-mediated Nrip1 deletion did not produce detectable off-target effects. We conclude that CriPs offer an effective Cas9 and sgRNA delivery system for ablating targeted gene products in cultured cells and in vivo, providing a potential therapeutic strategy for metabolic disease

    Faecalibacterium prausnitzii promotes intestinal epithelial IL-18 production through activation of the HIF1α pathway

    Get PDF
    INTRODUCTION: Intestinal epithelial cells produce interleukin-18 (IL-18), a key factor in promoting epithelial barrier integrity. Here, we analyzed the potential role of gut bacteria and the hypoxia-inducible factor 1α (HIF1α) pathway in regulating mucosal IL18 expression in inflammatory bowel disease (IBD). METHODS: Mucosal samples from patients with IBD ( n  = 760) were analyzed for bacterial composition, IL18 levels and HIF1α pathway activation. Wild-type Caco-2 and CRISPR/Cas9-engineered Caco-2- HIF1A-null cells were cocultured with Faecalibacterium prausnitzii in a "Human oxygen-Bacteria anaerobic" in vitro system and analyzed by RNA sequencing. RESULTS: Mucosal IL18 mRNA levels correlated positively with the abundance of mucosal-associated butyrate-producing bacteria, in particular F. prausnitzii, and with HIF1α pathway activation in patients with IBD. HIF1α-mediated expression of IL18, either by a pharmacological agonist (dimethyloxallyl glycine) or F. prausnitzii, was abrogated in Caco-2- HIF1A-null cells. CONCLUSION: Butyrate-producing gut bacteria like F. prausnitzii regulate mucosal IL18 expression in a HIF1α-dependent manner that may aid in mucosal healing in IBD. </p

    Faecalibacterium prausnitzii promotes intestinal epithelial IL-18 production through activation of the HIF1α pathway

    Get PDF
    INTRODUCTION: Intestinal epithelial cells produce interleukin-18 (IL-18), a key factor in promoting epithelial barrier integrity. Here, we analyzed the potential role of gut bacteria and the hypoxia-inducible factor 1α (HIF1α) pathway in regulating mucosal IL18 expression in inflammatory bowel disease (IBD). METHODS: Mucosal samples from patients with IBD ( n  = 760) were analyzed for bacterial composition, IL18 levels and HIF1α pathway activation. Wild-type Caco-2 and CRISPR/Cas9-engineered Caco-2- HIF1A-null cells were cocultured with Faecalibacterium prausnitzii in a "Human oxygen-Bacteria anaerobic" in vitro system and analyzed by RNA sequencing. RESULTS: Mucosal IL18 mRNA levels correlated positively with the abundance of mucosal-associated butyrate-producing bacteria, in particular F. prausnitzii, and with HIF1α pathway activation in patients with IBD. HIF1α-mediated expression of IL18, either by a pharmacological agonist (dimethyloxallyl glycine) or F. prausnitzii, was abrogated in Caco-2- HIF1A-null cells. CONCLUSION: Butyrate-producing gut bacteria like F. prausnitzii regulate mucosal IL18 expression in a HIF1α-dependent manner that may aid in mucosal healing in IBD. </p
    • …
    corecore