93,857 research outputs found

    Geometric phase for an accelerated two-level atom and the Unruh effect

    Full text link
    We study, in the framework of open quantum systems, the geometric phase acquired by a uniformly accelerated two-level atom undergoing nonunitary evolution due to its coupling to a bath of fluctuating vacuum electromagnetic fields in the multipolar scheme. We find that the phase variation due to the acceleration can be in principle observed via atomic interferometry between the accelerated atom and the inertial one, thus providing an evidence of the Unruh effect.Comment: 12 pages, no figure

    Gather-Excite: Exploiting Feature Context in Convolutional Neural Networks

    Full text link
    While the use of bottom-up local operators in convolutional neural networks (CNNs) matches well some of the statistics of natural images, it may also prevent such models from capturing contextual long-range feature interactions. In this work, we propose a simple, lightweight approach for better context exploitation in CNNs. We do so by introducing a pair of operators: gather, which efficiently aggregates feature responses from a large spatial extent, and excite, which redistributes the pooled information to local features. The operators are cheap, both in terms of number of added parameters and computational complexity, and can be integrated directly in existing architectures to improve their performance. Experiments on several datasets show that gather-excite can bring benefits comparable to increasing the depth of a CNN at a fraction of the cost. For example, we find ResNet-50 with gather-excite operators is able to outperform its 101-layer counterpart on ImageNet with no additional learnable parameters. We also propose a parametric gather-excite operator pair which yields further performance gains, relate it to the recently-introduced Squeeze-and-Excitation Networks, and analyse the effects of these changes to the CNN feature activation statistics.Comment: NeurIPS 201

    Analytical Solution of Electron Spin Decoherence Through Hyperfine Interaction in a Quantum Dot

    Full text link
    We analytically solve the {\it Non-Markovian} single electron spin dynamics due to hyperfine interaction with surrounding nuclei in a quantum dot. We use the equation-of-motion method assisted with a large field expansion, and find that virtual nuclear spin flip-flops mediated by the electron contribute significantly to a complete decoherence of transverse electron spin correlation function. Our results show that a 90% nuclear polarization can enhance the electron spin T2T_2 time by almost two orders of magnitude. In the long time limit, the electron spin correlation function has a non-exponential 1/t21/t^2 decay in the presence of both polarized and unpolarized nuclei.Comment: 4 pages, 3 figure

    M-atom conductance oscillations of a metallic quantum wire

    Full text link
    The electron transport through a monoatomic metallic wire connected to leads is investigated using the tight-binding Hamiltonian and Green's function technique. Analytical formulas for the transmittance are derived and M-atom oscillations of the conductance versus the length of the wire are found. Maxima of the transmittance function versus the energy, for the wire consisted of N atoms, determine the (N+1) period of the conductance. The periods of conductance oscillations are discussed and the local and average quantum wire charges are presented. The average charge of the wire is linked with the period of the conductance oscillations and it tends to the constant value as the length of the wire increases. For M-atom periodicity there are possible (M-1) average occupations of the wire states.Comment: 8 pages, 5 figures. J.Phys.: Condens. matter (2005) accepte

    An analytic Approach to Turaev's Shadow Invariant

    Full text link
    In the present paper we extend the "torus gauge fixing approach" by Blau and Thompson (Nucl. Phys. B408(1):345--390, 1993) for Chern-Simons models with base manifolds M of the form M= \Sigma x S^1 in a suitable way. We arrive at a heuristic path integral formula for the Wilson loop observables associated to general links in M. We then show that the right-hand side of this formula can be evaluated explicitly in a non-perturbative way and that this evaluation naturally leads to the face models in terms of which Turaev's shadow invariant is defined.Comment: 44 pages, 2 figures. Changes have been made in Sec. 2.3, Sec 2.4, Sec. 3.4, and Sec. 3.5. Appendix C is ne

    An Isocurvature Mechanism for Structure Formation

    Get PDF
    We examine a novel mechanism for structure formation involving initial number density fluctuations between relativistic species, one of which then undergoes a temporary downward variation in its equation of state and generates superhorizon-scale density fluctuations. Isocurvature decaying dark matter models (iDDM) provide concrete examples. This mechanism solves the phenomenological problems of traditional isocurvature models, allowing iDDM models to fit the current CMB and large-scale structure data, while still providing novel behavior. We characterize the decaying dark matter and its decay products as a single component of ``generalized dark matter''. This simplifies calculations in decaying dark matter models and others that utilize this mechanism for structure formation.Comment: 4 pages, 3 figures, submitted to PRD (rapid communications
    • …
    corecore