175 research outputs found

    Geo-Social Group Queries with Minimum Acquaintance Constraint

    Full text link
    The prosperity of location-based social networking services enables geo-social group queries for group-based activity planning and marketing. This paper proposes a new family of geo-social group queries with minimum acquaintance constraint (GSGQs), which are more appealing than existing geo-social group queries in terms of producing a cohesive group that guarantees the worst-case acquaintance level. GSGQs, also specified with various spatial constraints, are more complex than conventional spatial queries; particularly, those with a strict kkNN spatial constraint are proved to be NP-hard. For efficient processing of general GSGQ queries on large location-based social networks, we devise two social-aware index structures, namely SaR-tree and SaR*-tree. The latter features a novel clustering technique that considers both spatial and social factors. Based on SaR-tree and SaR*-tree, efficient algorithms are developed to process various GSGQs. Extensive experiments on real-world Gowalla and Dianping datasets show that our proposed methods substantially outperform the baseline algorithms based on R-tree.Comment: This is the preprint version that is accepted by the Very Large Data Bases Journa

    Structural failure process of schistosity rock under microwave radiation at high temperatures

    Get PDF
    The effects of high temperature induced by microwave radiation on the schistosity structural rock were investigated. A 1.45 kW commercial microwave system was employed to irradiate specimens to a designed temperature (300–800 °C) for 15 minutes. Cracking and local melting initially appeared in the biotite enrichment area at 500 °C. Macro-cracks in the dark area were parallel to the schistosity trend, owing to the weak connection in a direction perpendicular to the schistosity plane. The composition of the rock did not significantly change before and after microwave radiation. The diffraction peak intensity of the biotite decreased with temperature increase, owing to melting. The average peak stress decreased significantly with increasing temperature. It is concluded that the high temperature induced by microwave radiation promotes hard rock breakage and the schistosity structure of rock significantly affects the cracking pattern

    The thermal damaging process of diorite under microwave irradiation

    Get PDF
    Laboratory tests have been conducted to investigate the effects of thermal damage on diorite under microwave irradiation. The sample rocks were heated to high temperature range of 300 to 800 ℃ in a single-mode microwave furnace. The experimental results show that the rocks started to crack at 500 ℃ and completely disintegrated at 700 ℃. The intensities of quartz diffraction peaks were almost unchanged while the diffraction peak intensity of hornblende gradually decreased with temperature increasing. In addition, the chlorite diffraction peak disappeared at 500 ℃. The compressive strength of the sample decreased to 40% at 600 ℃ and it approached zero at 700 ℃. In this paper, the possible reasons for the thermal effects on the fracture of diorite were discussed, which can be related to water evaporation, thermal cracks and mismatch thermal expansion, and phase transition on quartz. The result indicates that diorite can be effectively destroyed under microwave irradiation
    corecore