3,941 research outputs found

    SegNeXt: Rethinking Convolutional Attention Design for Semantic Segmentation

    Full text link
    We present SegNeXt, a simple convolutional network architecture for semantic segmentation. Recent transformer-based models have dominated the field of semantic segmentation due to the efficiency of self-attention in encoding spatial information. In this paper, we show that convolutional attention is a more efficient and effective way to encode contextual information than the self-attention mechanism in transformers. By re-examining the characteristics owned by successful segmentation models, we discover several key components leading to the performance improvement of segmentation models. This motivates us to design a novel convolutional attention network that uses cheap convolutional operations. Without bells and whistles, our SegNeXt significantly improves the performance of previous state-of-the-art methods on popular benchmarks, including ADE20K, Cityscapes, COCO-Stuff, Pascal VOC, Pascal Context, and iSAID. Notably, SegNeXt outperforms EfficientNet-L2 w/ NAS-FPN and achieves 90.6% mIoU on the Pascal VOC 2012 test leaderboard using only 1/10 parameters of it. On average, SegNeXt achieves about 2.0% mIoU improvements compared to the state-of-the-art methods on the ADE20K datasets with the same or fewer computations. Code is available at https://github.com/uyzhang/JSeg (Jittor) and https://github.com/Visual-Attention-Network/SegNeXt (Pytorch).Comment: SegNeXt, a simple CNN for semantic segmentation. Code is availabl

    Friedmann cosmology with a generalized equation of state and bulk viscosity

    Full text link
    The universe media is considered as a non-perfect fluid with bulk viscosity and described by a more general equation of state. We assume the bulk viscosity is a linear combination of the two terms: one is constant, and the other is proportional to the scalar expansion θ=3a˙/a\theta=3\dot{a}/a. The equation of state is described as p=(γ1)ρ+p0p=(\gamma-1)\rho+p_0, where p0p_0 is a parameter. This model can be used to explain the dark energy dominated universe. Different choices of the parameters may lead to three kinds of fates of the cosmological evolution: no future singularity, big rip, or Type III singularity of Ref. [S. Nojiri, S.D. Odintsov, and S. Tsujikawa, Phys. Rev. D \textbf{71}, 063004 (2005)].Comment: 5 pages and 4 fig

    Numerical simulation analysis of four-step variable-diameter pipe by solid-liquid two-phase grinding

    Get PDF
    In order to investigate the effect of abrasive flow on the polishing effect of variable diameter pipe parts, taking the fourth-order variable-diameter pipe part as the research object, the solid-liquid two-phase abrasive grains are used as the processing method of the fourth-order variable-diameter pipe, the numerical simulation of the machining process of the four-order variable-diameter pipe parts were carried out. Analysis of different inlet speed conditions, the dynamic pressure and the distribution of turbulence intensity of the flow field of the fourth order variable diameter pipe. Through comparative analysis, the effects of the four-stage variable-diameter pipe flow field are studied, which can provide the theoretical basis for the continuous improvement of the abrasive flow precision and ultra precision machining technology, which can improve the efficiency of abrasive flow processing, so that the workpiece fatigue strength is improved, enhance the reliability of the workpiece, extend the service life of the workpiece

    An online conserved SSR discovery through cross-species comparison

    Get PDF
    Simple sequence repeats (SSRs) play important roles in gene regulation and genome evolution. Although there exist several online resources for SSR mining, most of them only extract general SSR patterns without providing functional information. Here, an online search tool, CG-SSR (Comparative Genomics SSR discovery), has been developed for discovering potential functional SSRs from vertebrate genomes through cross-species comparison. In addition to revealing SSR candidates in conserved regions among various species, it also combines accurate coordinate and functional genomics information. CG-SSR is the first comprehensive and efficient online tool for conserved SSR discovery

    Deep Latent Regularity Network for Modeling Stochastic Partial Differential Equations

    Get PDF
    Stochastic partial differential equations (SPDEs) are crucial for modelling dynamics with randomness in many areas including economics, physics, and atmospheric sciences. Recently, using deep learning approaches to learn the PDE solution for accelerating PDE simulation becomes increasingly popular. However, SPDEs have two unique properties that require new design on the models. First, the model to approximate the solution of SPDE should be generalizable over both initial conditions and the random sampled forcing term. Second, the random forcing terms usually have poor regularity whose statistics may diverge (e.g., the space-time white noise). To deal with the problems, in this work, we design a deep neural network called Deep Latent Regularity Net (DLR-Net). DLR-Net includes a regularity feature block as the main component, which maps the initial condition and the random forcing term to a set of regularity features. The processing of regularity features is inspired by regularity structure theory and the features provably compose a set of basis to represent the SPDE solution. The regularity features are then fed into a small backbone neural operator to get the output. We conduct experiments on various SPDEs including the dynamic Φ^{4}_{1} model and the stochastic 2D Navier-Stokes equation to predict their solutions, and the results demonstrate that the proposed DLR-Net can achieve SOTA accuracy compared with the baselines. Moreover, the inference time is over 20 times faster than the traditional numerical solver and is comparable with the baseline deep learning models

    Deep Random Vortex Method for Simulation and Inference of Navier-Stokes Equations

    Full text link
    Navier-Stokes equations are significant partial differential equations that describe the motion of fluids such as liquids and air. Due to the importance of Navier-Stokes equations, the development on efficient numerical schemes is important for both science and engineer. Recently, with the development of AI techniques, several approaches have been designed to integrate deep neural networks in simulating and inferring the fluid dynamics governed by incompressible Navier-Stokes equations, which can accelerate the simulation or inferring process in a mesh-free and differentiable way. In this paper, we point out that the capability of existing deep Navier-Stokes informed methods is limited to handle non-smooth or fractional equations, which are two critical situations in reality. To this end, we propose the \emph{Deep Random Vortex Method} (DRVM), which combines the neural network with a random vortex dynamics system equivalent to the Navier-Stokes equation. Specifically, the random vortex dynamics motivates a Monte Carlo based loss function for training the neural network, which avoids the calculation of derivatives through auto-differentiation. Therefore, DRVM not only can efficiently solve Navier-Stokes equations involving rough path, non-differentiable initial conditions and fractional operators, but also inherits the mesh-free and differentiable benefits of the deep-learning-based solver. We conduct experiments on the Cauchy problem, parametric solver learning, and the inverse problem of both 2-d and 3-d incompressible Navier-Stokes equations. The proposed method achieves accurate results for simulation and inference of Navier-Stokes equations. Especially for the cases that include singular initial conditions, DRVM significantly outperforms existing PINN method
    corecore