98 research outputs found

    AI for Archives: Using Facial Recognition to Enhance Metadata

    Get PDF
    The goal of this research project was to determine the most effective facial recognition applications that could be implemented into digital archive image collections from libraries, museums, and cultural heritage institutions. Computer scientists and librarians at Florida International University collaborated to conduct qualitative assessments of both face detection and face search using photographs from FIU’s digital collections. Specifically, the facial recognition platforms OpenCV, Face++, and Amazon AWS were analyzed. This project seeks to assist LYRASIS community members who wish to incorporate facial recognition and other artificial intelligence technology into their digital collections and repositories as a method to reduce research time and enhance their collections with more complete metadata

    Effect of Internalin InlJ of Listeria monocytogenes on Phage Sensitivity and Biofilm Formation

    Get PDF
    In order to explore the role and function of the inlJ gene of Listeria monocytogenes (Lm) in phage sensitivity and biofilm, the inlJ gene-deficient strain Lm NJ05-ΔinlJ was constructed by homologous recombination. The growth, adhesion and invasion characteristics of the defective strain were identified. The results showed that compared with the wide-type strain Lm NJ05, the adhesion and invasion of RAW264.7 cells by Lm NJ05-ΔinlJ were significantly reduced to 20.05% and 4.42%, respectively. The efficiency of plaque formation was enhanced by 2.72 folds and phage vB-LmoM-NJ05 had a stronger lytic activity on Lm NJ05-ΔinlJ. Phage vB-LmoM-NJ05 at titers of 105 and 108 PFU/mL could completely inhibit and remove the biofilm of Lm NJ05-ΔinlJ, respectively. Transcriptional analysis of biofilm formation-related genes showed that the transcriptional levels of the degU, agrA, agrD, luxS, yneA, recA and hpt genes were significantly decreased to nearly zero in the defective strain after interacting with phage vB-LmoM-NJ05. In conclusion, deletion of the inlJ gene can enhance the phage sensitivity of Lm, and down-regulate the ability of cell invasion and biofilm formation. Therefore, the inlJ gene not only regulate Lm but also affect its interaction with phage, which lays a foundation for the development and application of phage biocontrol

    The distribution of heterophilic antigens and their relationship with autoimmune diseases

    Get PDF
    IntroductionMicrobial infections are associated with the occurrence of autoimmune diseases, but the mechanisms of microbial infection inducing autoimmune diseases are not fully understood. The existence of heterophilic antigens between microorganisms and human tissues may explain part of the pathogenesis of autoimmune diseases. Here, we investigate the distribution of heterophilic antigens and its relationship with autoimmune diseases.MethodsMonoclonal antibodies against a variety of microorganisms were prepared. The titer, subclass and reactivity of antibodies with microorganisms were identified, and heterophilic antibodies that cross-reacted with human tissues were screened by human tissue microarray. The reactivity of these heterophilic antibodies with different individuals and different species was further examined by immunohistochemistry.ResultsIn this study, 21 strains of heterophilic antibodies were screened. The results showed that these heterophilic antibodies were produced due to the existence of heterophilic antigens between microorganism and human body and the distribution of heterophilic antigens had individual, tissue and species differences.ConclusionOur study showed that heterophilic antigens exist widely between microorganisms and human body, and the heterophilic antigens carried by microorganisms may break the immune tolerance of the body through carrier effect and initiate immune response, which may be one of the important mechanisms of infection inducing autoimmune diseases

    Unraveling the transcriptome-based network of tfh cells in primary sjogren syndrome: insights from a systems biology approach

    Get PDF
    BackgroundPrimary Sjogren Syndrome (pSS) is an autoimmune disease characterized by immune cell infiltration. While the presence of follicular T helper (Tfh) cells in the glandular microenvironment has been observed, their biological functions and clinical significance remain poorly understood.MethodsWe enrolled a total of 106 patients with pSS and 46 patients without pSS for this study. Clinical data and labial salivary gland (LSG) biopsies were collected from all participants. Histological staining was performed to assess the distribution of Tfh cells and B cells. Transcriptome analysis using RNA-sequencing (RNA-seq) was conducted on 56 patients with pSS and 26 patients without pSS to uncover the underlying molecular mechanisms of Tfh cells. To categorize patients, we employed the single-sample gene set enrichment analysis (ssGSEA) algorithm, dividing them into low- and high-Tfh groups. We then utilized gene set enrichment analysis (GSEA), weighted gene co-expression network analysis (WGCNA), and deconvolution tools to explore functional and immune infiltration differences between the low- and high-Tfh groups.ResultsPatients with pSS had a higher positive rate of the antinuclear antibody (ANA), anti-Ro52, anti-SSA, anti-SSB and hypergammaglobulinaemia and higher levels of serum IgG compared to the non-pSS. Histopathologic analyses revealed the presence of Tfh cells (CD4+CXCR5+ICOS+) in germinal centers (GC) within the labial glands of pSS patients. GSEA, WGCNA, and correlation analysis indicated that the high-Tfh group was associated with an immune response related to virus-mediated IFN response and metabolic processes, primarily characterized by hypoxia, elevated glycolysis, and oxidative phosphorylation levels. In pSS, most immune cell types exhibited significantly higher infiltration levels in the high-Tfh group compared to the low-Tfh group. Additionally, patients in the Tfh-high group demonstrated a higher positive rate of the ANA, rheumatoid factor (RF), and hypergammaglobulinaemia, as well as higher serum IgG levels.ConclusionOur study suggests that Tfh cells may play a crucial role in the pathogenesis of pSS and could serve as potential therapeutic targets in pSS patients

    Characterisation of macrophage infiltration and polarisation based on integrated transcriptomic and histological analyses in Primary Sjögren’s syndrome

    Get PDF
    BackgroundPrimary Sjögren’s syndrome (pSS) is a progressive inflammatory autoimmune disease. Immune cell infiltration into glandular lobules and ducts and glandular destruction are the pathophysiological hallmarks of pSS. Macrophages are one of the most important cells involved in the induction and regulation of an inflammatory microenvironment. Although studies have reported that an abnormal tissue microenvironment alters the metabolic reprogramming and polarisation status of macrophages, the mechanisms driving macrophage infiltration and polarisation in pSS remain unclear.MethodsImmune cell subsets were characterised using the single-cell RNA sequencing (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) from patients with pSS (n = 5) and healthy individuals (n = 5) in a public dataset. To evaluate macrophage infiltration and polarisation in target tissues, labial salivary gland biopsy tissues were subjected to histological staining and bulk RNA-seq (pSS samples, n = 24; non-pSS samples, n = 12). RNA-seq data were analysed for the construction of macrophage co-expression modules, enrichment of biological processes and deconvolution-based screening of immune cell types.ResultsDetailed mapping of PBMCs using scRNA-seq revealed five major immune cell subsets in pSS, namely, T cells, B cells, natural killer (NK) cells, dendritic cells (DCs) and monocyte-macrophages. The monocyte-macrophage subset was large and had strong inflammatory gene signatures. This subset was found to play an important role in the generation of reactive oxygen species and communicate with other innate and adaptive immune cells. Histological staining revealed that the number of tissue-resident macrophages was high in damaged glandular tissues, with the cells persistently surrounding the tissues. Analysis of RNA-seq data using multiple algorithms demonstrated that the high abundance of pro-inflammatory M1 macrophages was accompanied by the high abundance of other infiltrating immune cells, senescence-associated secretory phenotype and evident metabolic reprogramming.ConclusionMacrophages are among the most abundant innate immune cells in PBMCs and glandular tissues in patients with pSS. A bidirectional relationship exists between macrophage polarisation and the inflammatory microenvironment, which may serve as a therapeutic target for pSS

    Risk Prediction and Assessment: Duration, Infections, and Death Toll of the COVID-19 and Its Impact on China’s Economy

    Get PDF
    This study first analyzes the national and global infection status of the Coronavirus Disease that emerged in 2019 (COVID-19). It then uses the trend comparison method to predict the inflection point and Key Point of the COVID-19 virus by comparison with the severe acute respiratory syndrome (SARS) graphs, followed by using the Autoregressive Integrated Moving Average model, Autoregressive Moving Average model, Seasonal Autoregressive Integrated Moving-Average with Exogenous Regressors, and Holt Winter’s Exponential Smoothing to predict infections, deaths, and GDP in China. Finally, it discusses and assesses the impact of these results. This study argues that even if the risks and impacts of the epidemic are significant, China’s economy will continue to maintain steady development
    • …
    corecore