32 research outputs found

    Numerical Investigation of the Influences of Wellbore Flow on Compressed Air Energy Storage in Aquifers

    No full text
    With the blossoming of intermittent energy, compressed air energy storage (CAES) has attracted much attention as a potential large-scale energy storage technology. Compared with caverns as storage vessels, compressed air energy storage in aquifers (CAESA) has the advantages of wide availability and lower costs. The wellbore can play an important role as the energy transfer mechanism between the surroundings and the air in CAESA system. In this paper, we investigated the influences of the well screen length on CAESA system performance using an integrated wellbore-reservoir simulator (T2WELL/EOS3). The results showed that the well screen length can affect the distribution of the initial gas bubble and that a system with a fully penetrating wellbore can obtain acceptably stable pressurized air and better energy efficiencies. Subsequently, we investigated the impact of the energy storage scale and the target aquifer depth on the performance of a CAESA system using a fully penetrating wellbore. The simulation results demonstrated that larger energy storage scales exhibit better performances of CAESA systems. In addition, deeper target aquifer systems, which could decrease the energy loss by larger storage density and higher temperature in surrounding formation, can obtain better energy efficiencies

    Evaluation of Groundwater Storage Variations in Northern China Using GRACE Data

    No full text
    Dynamic change of groundwater storage is one of the most important topics in the sustainable management of groundwater resources. Groundwater storage variations are firstly isolated from the terrestrial water storage change using the Global Land Data Assimilation System (GLDAS). Two datasets are used: (1) annual groundwater resources and (2) groundwater storage changes estimated from point-based groundwater level data in observation wells. Results show that the match between the GRACE-derived groundwater storage variations and annual water resources variation is not good in six river basins of Northern China. However, it is relatively good between yearly GRACE-derived groundwater storage data and groundwater storage change dataset in Huang-Huai-Hai Plain and the Song-Liao Plain. The mean annual depletion rate of groundwater storage in the Northern China was approximately 1.70 billion m3 yr−1 from 2003 to 2012. In terms of provinces, the yearly depletion rate is higher in Jing-Jin-Ji (Beijing, Tianjin, and Hebei province) and lowest in Henan province from 2003 to 2012, with the rate of 0.70 and 0.21 cm yr−1 Equivalent Water Height (EWH), respectively. Different land surface models suggest that the patterns from different models almost remain the same, and soil moisture variations are generally bigger than snow water equivalent variations

    Regional Groundwater Flow Assessment in a Prospective High-Level Radioactive Waste Repository of China

    No full text
    The production of nuclear energy will result in high-level radioactive waste (HLRW), which brings potential environmental dangers. Selecting a proper disposal repository is a crucial step in the development of nuclear energy. This paper introduces firstly the hydrogeological conditions of the Beishan area in China. Next, a regional groundwater model is constructed using a multiphase flow simulator to analyze the groundwater flow pattern in the Beishan area. Model calibration shows that the simulated and observed hydraulic heads match well, and the simulated regional groundwater flow pattern is similar to the surface flow pattern from the channel network, indicating that the groundwater flow is mainly dependent on the topography. In addition, the simulated groundwater storage over the period from 2003 to 2014 is similar to the trend derived from the Gravity Recovery and Climate Experiment satellite-derived results. Last, the established model is used to evaluate the influences of the extreme climate and regional faults on the groundwater flow pattern. It shows that they do not have a significant influence on the regional groundwater flow patterns. This study will provide a preliminary reference for the regional groundwater flow assessment in the site of the HLRW in China

    Hydrochemical Characteristics of Groundwater and Their Significance in Arid Inland Hydrology

    No full text
    Phreatic groundwater hydrochemistry is important for sustainable water utilization and ecological stability in arid regions. Based on the test data from collected water samples, this study explored the phreatic groundwater recharge, hydrochemical evolution, and quality of the Sugan Lake Basin using hydrogeochemical, isotopic, and multivariate statistical analyses. The stable isotopic results showed that the phreatic groundwater in the alluvial fan, plain, and wetland areas of the basin generally originated from modern water, and the phreatic groundwater in the piedmont was mainly recharged by paleowater under low-temperature conditions. Carbonate is the dominant mineral in the regional rock weathering process. Phreatic groundwater in the piedmont is controlled by mineral dissolution and cation exchange; however, phreatic groundwater in other areas of the basin is significantly affected by river infiltration. This indicates that the hydrochemical regime of phreatic groundwater is sensitive to natural river flow without disturbing human activity. Class I–V groundwater samples accounted for 2.86%, 25.71%, 34.29%, 14.29%, and 22.86%, respectively. Total dissolved solids, total hardness, sulfate, chloride, nitrite, Na, Fe, Hg, and Cr VI are important factors that determine groundwater quality. This study deepens the understanding of phreatic groundwater hydrochemical characteristics and hydrologic cycles in the Sugan Lake Basin and provides background values of hydrochemistry without human interference for further study in arid inland basins

    Numerical simulation studies on monitored natural attenuation of phenol in aquifers considering the biodegradation effect

    No full text
    Objective Monitoring natural attenuation (MNA) is a widely used, economical and effective remediation technique for soil and groundwater contamination. The migration of nonaqueous phase liquid (NAPL) in heterogeneous strata is an important element in the assessment for the efficiency of MNA. Methods Based on three consecutive years of dynamic groundwater quality monitoring data, the purpose of this study is to accurately characterize the biodegradation processes of multiphase fluids at a typical phenol contaminated site in northern China. A multiphase flow numerical model of phenol transport considering Monod biodegradation processes based on TOUGH3/TMVOCBio software was developed and applied. The model depicted the spatial distribution and temporal variation of phenol under the current conditions well and analysed the sensitivities of the adsorption and biodegradation parameters. The paper also discussed the removal contributions of dissolution, volatilization, adsorption and biodegradation effects under uncertainty of adsorption and microbial degradation parameters and predicted two different natural attenuation scenarios for source disposal. Results The contribution of phenol removal varies over a range under the influence of parameter uncertainty, with 17.91% to 58.02% for biodegradation, and precipitation conditions affect the seasonal variation in phenol concentrations. In the future 20 years, under the conditions with complete removal of the phenol source and the present leakage model, the total mass removal rate of phenol will arrive at 98% and 80% at the end of the 20th year, respectively. Conclusion This paper identifies the biodegradation parameters with high sensitivity in the multiphase flow model, which provides a reference for the numerical simulation of the organic matter biodegradation process at petrochemical sites and can also provide a theoretical basis for the application of MNA technology in China

    Enhanced Understanding of Groundwater Storage Changes under the Influence of River Basin Governance Using GRACE Data and Downscaling Model

    No full text
    The low spatial resolution of Gravity Recovery and Climate Experiment (GRACE) data limits their application in practical groundwater resource management. To overcome this limitation, this study developed a dynamic downscaling method based on a model using groundwater storage anomaly (GWSA) data to study groundwater storage changes in an inland arid region. The groundwater storage model was calibrated using publicly accessible data at a spatial resolution of 1°. The constructed model had a satisfactory fitting effect in both the calibration and validation periods, with correlation coefficients over 0.60, in general, and a root mean square error of less than 1.00 cm equivalent water height (EWH). It was found that the hydraulic gradient coefficient was the most sensitive parameter, whereas the boundary condition had an obvious influence on the simulated GWSA compared to the different forcing data. The model was then refined at a higher resolution (0.05°) using driving data to obtain downscaled GWSA data. The downscaled results had a similar pattern to the GRACE-derived GWSA and reflected the spatial heterogeneity across the basin scale and subregion scales. The downscaled GWSA shows that the groundwater storage had an overall downward trend during the period from 2003 to 2019 and the annual decline rates ranged from 0.22 to 0.32 cm/year in four subregions. A four-month time lag between the field-observed and downscaled GWSA was observed downstream of the study area. This study provides an applicable method for assessing groundwater storage changes for groundwater management at the local scale
    corecore