151 research outputs found
2D MXene Ti3C2Tx nanosheets in the development of a mechanically enhanced and efficient antibacterial dental resin composite
The bacterial accumulation at the margins of dental resin composites is a main cause of secondary caries, which may further lead to prosthodontic failure. In this regard, this study for the first time incorporated 2D MXene Ti3C2Tx nanosheets (NSs) into epoxy resin at different mass ratios (0, 0.5, 1.0, and 2.0 wt%) by solution blending and direct curing for dental applications. Compared to the pure resin, the as-fabricated MXene/resin composite not only exhibited improved mechanical and abrasive results but also displayed gradually improved antibacterial activity with MXene loading which was further enhanced by illumination in natural light due to the high photothermal efficiency of MXene. In addition, the cytotoxicity result demonstrated that the MXene-modified resin did not cause severe damage to normal cells. This novel MXene/resin nanocomposite could pave the way for new designs for high-performance, multifunctional nanocomposites to effectively protect dental health in daily life
Chronic widespread pain after motor vehicle collision typically occurs through immediate development and nonrecovery: results of an emergency department-based cohort study
Motor vehicle collision (MVC) can trigger chronic widespread pain (CWP) development in vulnerable individuals. Whether such CWP typically develops via the evolution of pain from regional to widespread or via the early development of widespread pain with non-recovery is currently unknown. We evaluated the trajectory of CWP development (American College of Rheumatology criteria) among 948 European-American individuals who presented to the emergency department (ED) for care in the early aftermath of MVC. Pain extent was assessed in the ED and 6 weeks, 6 months, and 1 year after MVC on 100%, 91%, 89%, and 91% of participants, respectively. Individuals who reported prior CWP at the time of ED evaluation (n = 53) were excluded. Trajectory modeling identified a two-group solution as optimal, with the Bayes Factor value (138) indicating strong model selection. Linear solution plots supported a non-recovery model. While the number of body regions with pain in the non-CWP group steadily declined, the number of body regions with pain in the CWP trajectory group (192/895, 22%) remained relatively constant over time. These data support the hypothesis that individuals who develop CWP after MVC develop widespread pain in the early aftermath of MVC which does not remit
Plasma MicroRNA Pair Panels as Novel Biomarkers for Detection of Early Stage Breast Cancer
Introduction: Breast cancer is the second leading cause of cancer death among females. We sought to identify microRNA (miRNA) markers in breast cancer, and determine whether miRNA expression is predictive of early stage breast cancer. The paired panel of microRNAs is promising.Methods: Global miRNA expression profiling was performed on three pooling samples of plasma from breast cancer, benign lesion and normal, using next generation sequencing technology. Thirteen microRNAs (hsa-miR-21-3p, hsa-miR-192-5p, hsa-miR-221-3p, hsa-miR-451a, hsa-miR-574-5p, hsa-miR-1273g-3p, hsa-miR-152, hsa-miR-22-3p, hsa-miR-222-3p, hsa-miR-30a-5p, hsa-miR-30e-5p, hsa-miR-324-3p, and hsa -miR-382-5p) were subsequently validated using real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) in a cohort of 53 breast cancer, 40 benign lesions and 38 normal cases. The pairwise miRNA ratios were calculated as biomarkers to classify breast cancer.Results: According to the model used to predict breast cancer from benign lesions, a panel of five miRNA pairs had high diagnostic power with an AUC of 0.942. The sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of this model after 10-fold cross validation were 0.881, 0.775, 0.827, and 0.756, respectively. In addition, the other panels of miRNA pairs distinguishing the breast cancer from normal and non-cancer patients had good performance.Conclusion: Certain MicroRNA pairs were identified and deemed effective in breast cancer screening, especially when distinguishing cancer from benign lesions
Genetic variant rs3750625 in the 3′UTR of ADRA2A affects stress-dependent acute pain severity after trauma and alters a microRNA-34a regulatory site
α2A adrenergic receptor (α2A-AR) activation has been shown in animal models to play an important role in regulating the balance of acute pain inhibition vs. facilitation after both physical and psychological stress. To our knowledge the influence of genetic variants in the gene encoding α2A-AR, ADRA2A, on acute pain outcomes in humans experiencing traumatic stress has not been assessed. In this study, we tested whether a genetic variant in the 3′UTR of ADRA2A, rs3750625, is associated with acute musculoskeletal pain (MSP) severity following motor vehicle collision (MVC, n = 948) and sexual assault (n = 84), and whether this influence was affected by stress severity. We evaluated rs3750625 because it is located in the seed binding region of miR-34a, a microRNA (miRNA) known to regulate pain and stress responses. In both cohorts, the minor allele at rs3750625 was associated with increased MSP in distressed individuals (stress*rs3750625 p = 0.043 for MVC cohort and p = 0.007 for sexual assault cohort). We further found that (1) miR-34a binds the 3′UTR of ADRA2A, (2) the amount of repression is greater when the minor (risk) allele is present, (3) miR-34a in the IMR-32 adrenergic neuroblastoma cell line affects ADRA2A expression, (4) miR-34a and ADRA2A are expressed in tissues known to play a role in pain and stress, (5) following forced swim stress exposure, rat peripheral nerve tissue expression changes are consistent with miR-34a regulation of ADRA2A. Together these results suggest that ADRA2A rs3750625 contributes to post-stress MSP severity by modulating miR-34a regulation
CaMKIIα‐TARPγ8 signaling mediates hippocampal synaptic impairment in aging
Aging‐related decline in memory and synaptic function are associated with the dysregulation of calcium homeostasis, attributed to the overexpression of voltage‐gated calcium channels (VGCC). The membrane insertion of AMPAR governed by the AMPAR auxiliary proteins is essential for synaptic transmission and plasticity (LTP). In this study, we demonstrated the hippocampal expression of the transmembrane AMPAR regulatory proteins γ‐8 (TARPγ8) was reduced in aged mice along with the reduced CaMKIIα activity and memory impairment. We further showed that TARPγ8 expression was dependent on CaMKIIα activity. Inhibition of CaMKIIα activity significantly reduced the hippocampal TARPγ8 expression and CA3‐CA1 LTP in young mice to a similar level to that of the aged mice. Furthermore, the knockdown of hippocampal TARPγ8 impaired LTP and memory in young mice, which mimicked the aging‐related changes. We confirmed the enhanced hippocampal VGCC (Cav‐1.3) expression in aged mice and found that inhibition of VGCC activity largely increased both p‐CaMKIIα and TARPγ8 expression in aged mice, whereas inhibition of NMDAR or Calpains had no effect. In addition, we found that the exogenous expression of human TARPγ8 in the hippocampus in aged mice restored LTP and memory function. Collectively, these results indicate that the synaptic and cognitive impairment in aging is associated with the downregulation of CaMKIIα‐TARPγ8 signaling caused by VGCC activation. Our results suggest that TARPγ8 may be a key molecular biomarker for brain aging and that boosting CaMKIIα‐TARPγ8 signaling may be critical for the restoration of synaptic plasticity of aging and aging‐related diseases
Association of mutation patterns in gyrA/B genes and ofloxacin resistance levels in Mycobacterium tuberculosis isolates from East China in 2009
<p>Abstract</p> <p>Background</p> <p>This study aimed to analyze the association of mutation patterns in <it>gyrA </it>and <it>gyrB </it>genes and the ofloxacin resistance levels in clinical <it>Mycobacterium tuberculosis </it>isolates sampled in 2009 from East China.</p> <p>Methods</p> <p>The quinolone resistance-determining region of <it>gyrA/B </it>were sequenced in 192 <it>M. tuberculosis </it>clinical isolates and the minimal inhibitory concentrations (MICs) of 95 ofloxacin-resistant <it>M. tuberculosis </it>isolates were determined by using microplate nitrate reductase assays.</p> <p>Results</p> <p>Mutations in <it>gyrA </it>(codons 90, 91 and 94) and in <it>gyrB </it>(G551R, D500N, T539N, R485C/L) were observed in 89.5% (85/95) and 11.6% (11/95) of ofloxacin-resistant strains, respectively. The <it>gyrB </it>mutations G551R and G549D were observed in 4.1% (4/97) of ofloxacin-susceptible strains and no mutation was found in <it>gyrA </it>in ofloxacin-susceptible strains. The MICs of all ofloxacin-resistant strains showed no significant difference among strains with mutations at codons 90, 91 or 94 in <it>gyrA </it>(F = 1.268, <it>p </it>= 0.287). No differences were detected among strains with different amino acid mutations in the quinolone resistance-determining region of <it>gyrA </it>(F = 1.877, <it>p </it>= 0.123). The difference in MICs between ofloxacin-resistant strains with mutations in <it>gyrA </it>only and ofloxacin-resistant strains with mutations in both <it>gyrA </it>and <it>gyrB </it>genes was not statistically significant (F = 0.549, <it>p </it>= 0.461).</p> <p>Conclusions</p> <p>Although <it>gyrA/B </it>mutations can lead to ofloxacin resistance in <it>M. tuberculosis</it>, there were no associations of different mutation patterns in <it>gyrA/B </it>and the level of ofloxacin resistance in <it>M. tuberculosis </it>isolates from East China in 2009.</p
Evaluation of a Novel Biphasic Culture Medium for Recovery of Mycobacteria: A Multi-Center Study
on L-J slants. Automated liquid culture systems are expensive. A low-cost culturing medium capable of rapidly indicating the presence of mycobacteria is needed. The aim of this study was to develop and evaluate a novel biphasic culture medium for the recovery of mycobacteria from clinical sputum specimens from suspected pulmonary tuberculosis patients.<0.001).
DTYMK is essential for genome integrity and neuronal survival
Nucleotide metabolism is a complex pathway regulating crucial cellular processes such as nucleic acid synthesis, DNA repair and proliferation. This study shows that impairment of the biosynthesis of one of the building blocks of DNA, dTTP, causes a severe, early-onset neurodegenerative disease. Here, we describe two unrelated children with bi-allelic variants in DTYMK, encoding dTMPK, which catalyzes the penultimate step in dTTP biosynthesis. The affected children show severe microcephaly and growth retardation with minimal neurodevelopment. Brain imaging revealed severe cerebral atrophy and disappearance of the basal ganglia. In cells of affected individuals, dTMPK enzyme activity was minimal, along with impaired DNA replication. In addition, we generated dtymk mutant zebrafish that replicate this phenotype of microcephaly, neuronal cell death and early lethality. An increase of ribonucleotide incorporation in the genome as well as impaired responses to DNA damage were observed in dtymk mutant zebrafish, providing novel pathophysiological insights. It is highly remarkable that this deficiency is viable as an essential component for DNA cannot be generated, since the metabolic pathway for dTTP synthesis is completely blocked. In summary, by combining genetic and biochemical approaches in multiple models we identified loss-of-function of DTYMK as the cause of a severe postnatal neurodegenerative disease and highlight the essential nature of dTTP synthesis in the maintenance of genome stability and neuronal survival
- …