124 research outputs found

    Biomethanation and microbial community changes in a digester treating sludge from a brackish aquaculture recirculation system

    Get PDF
    AbstractUsing a high-salinity-adapted inoculum and a moderate stepwise-increased organic loading rate (OLR), a stable digester performance was achieved in treating sludge from a brackish aquaculture recirculation system. The specific methane yield was distinctly enhanced, reaching 0.203LCH4/gCODadded, compared to literature values (0.140–0.154LCH4/gCODadded) from the salty sludges. OLR adjustment and the fecal substrate substantially influenced population changes in the digester. Within the bacterial subpopulations, the relative abundance of Bacillus and Bacteroides declined, accompanied by the increase of Clostridium and Trigonala over time. The results show Trigonala was derived from the substrate and accumulated inside the digester. The most abundant methanogen was Methanosarcina in the inoculum and the digestates. The Methanosarcina proliferation can be ascribed to its metabolic versatility, probably a feature of crucial importance for high-salinity environments. Other frequently observed methanogens were outcompeted. The population similarity at the genus level between inoculum and digestates declined during the initial stage and afterwards increased

    Similar Connotation in Chronic Hepatitis B and Nonalcoholic Fatty Liver Patients with Dampness-Heat Syndrome

    Get PDF
    The phenomenon that the same syndrome turns up in different diseases appears in the sight of people around the world, which raises the thought for possibility of “Same Treatment for Different Diseases.” Actually, treatment based on ZHENG classification in Traditional Chinese Medicine could bring revelation for the former finding. The dampness-heat syndrome in chronic hepatitis B and nonalcoholic fatty liver is regarded as the breakthrough point. We discussed the molecular mechanism of similar connotation that exists in chronic hepatitis B and nonalcoholic fatty liver by metabonomics to give the modern understanding of dampness-heat syndrome. Both urine and serum metabolic profiling revealed that obvious differences existed between dampness-heat syndrome and non-dampness-heat syndrome but the commonality was proved to appear in chronic hepatitis B and nonalcoholic fatty liver patients with dampness-heat syndrome. Furthermore, disorder of body fluid metabolism, decline in digestive capacity, and imbalance of intestinal flora were found to be the new guiding for treatment, with the hope to provide the basis for Chinese personalized medicine

    RING finger 138 deregulation distorts NF-кB signaling and facilities colitis switch to aggressive malignancy

    Get PDF
    Prolonged activation of nuclear factor (NF)-кB signaling significantly contributes to the development of colorectal cancer (CRC). New therapeutic opportunities are emerging from targeting this distorted cell signaling transduction. Here, we discovered the critical role of RING finger 138 (RNF138) in CRC tumorigenesis through regulating the NF-кB signaling, which is independent of its Ubiquitin-E3 ligase activity involved in DNA damage response. RNF138(−/−) mice were hyper-susceptible to the switch from colitis to aggressive malignancy, which coincided with sustained aberrant NF-кB signaling in the colonic cells. Furthermore, RNF138 suppresses the activation of NF-кB signaling pathway through preventing the translocation of NIK and IKK-Beta Binding Protein (NIBP) to the cytoplasm, which requires the ubiquitin interaction motif (UIM) domain. More importantly, we uncovered a significant correlation between poor prognosis and the downregulation of RNF138 associated with reinforced NF-кB signaling in clinical settings, raising the possibility of RNF138 dysregulation as an indicator for the therapeutic intervention targeting NF-кB signaling. Using the xenograft models built upon either RNF138-dificient CRC cells or the cells derived from the RNF138-dysregulated CRC patients, we demonstrated that the inhibition of NF-кB signaling effectively hampered tumor growth. Overall, our work defined the pathogenic role of aberrant NF-кB signaling due to RNF138 downregulation in the cascade events from the colitis switch to colonic neoplastic transformation and progression, and also highlights the possibility of targeting the NF-кB signaling in treating specific subtypes of CRC indicated by RNF138-ablation

    The Promoting Effect of Ce on the Performance of Au/CexZr1−xO2 for γ-Valerolactone Production from Biomass-Based Levulinic Acid and Formic Acid

    No full text
    The production of γ-valerolactone (GVL) directly from biomass-based levulinic acid (LA) and formic acid (FA) without extra hydrogen source is attractive but challenging, due to the requirement of a highly active and stable catalyst. In present work, Au/CexZr1−xO2 with various Ce/Zr ratios were prepared as the catalyst for GVL production from LA with the equivalent molar FA, and characterized by XRD, Raman-spectra, BET, NH3-TPD, TEM and XPS. It was found that the doped Ce in Au/CexZr1−xO2 catalyst could improve the reduction of Au3+ to metallic Au0, and also promoted the dispersion of Au0, yielding uniform Au0 nanoparticles with a small average particle size of about 2.4 nm, thus enhancing both the decomposition of FA to CO-free H2 and the hydrogenation of LA. Meanwhile, a certain amount of doped Ce (x ≤ 0.4) could facilitate the formation of tetragonal phase (the most desired structure on LA conversion to GVL), and increase the amount of weak and medium-strength acidic sites of catalyst, thereby promoting the dehydration reaction of the intermediate derived from LA hydrogenation. Au/Ce0.4Zr0.6O2 catalyst exhibited the best catalytic activity, achieving 90.8% of LA conversion and 83.5% of GVL yield (TON = 2047.8), with good recyclability, and the activity showed no obvious change after 5 runs

    Roles of Chlorogenic Acid on Regulating Glucose and Lipids Metabolism: A Review

    Get PDF
    Intracellular glucose and lipid metabolic homeostasis is vital for maintaining basic life activities of a cell or an organism. Glucose and lipid metabolic disorders are closely related with the occurrence and progression of diabetes, obesity, hepatic steatosis, cardiovascular disease, and cancer. Chlorogenic acid (CGA), one of the most abundant polyphenol compounds in the human diet, is a group of phenolic secondary metabolites produced by certain plant species and is an important component of coffee. Accumulating evidence has demonstrated that CGA exerts many biological properties, including antibacterial, antioxidant, and anticarcinogenic activities. Recently, the roles and applications of CGA, particularly in relation to glucose and lipid metabolism, have been highlighted. This review addresses current studies investigating the roles of CGA in glucose and lipid metabolism

    Fragmentation of deprotonated diacylhydrazine derivatives in electrospray ionization tandem mass spectrometry: generation of acid anions via intramolecular rearrangement.

    Get PDF
    The gas-phase fragmentation pathways of deprotonated diacylhydrazine derivatives (R1(C = O)-N(t-Bu)NH(C = O)R2, Compounds 1-6) were investigated by the combination of electrospray ionization tandem mass spectrometry (ESI-MS/MS) and theoretical calculations. Upon collisional activation, the deprotonated molecular ions [M - H](-) dissociate in two reaction channels, both of which involve intramolecular rearrangement. The main product ion is confirmed to be an anionic acid species, [R1-CO2](-), generated through intramolecular rearrangement of [M - H](-) initiated by the nucleophilic attack of the amide O6 on the carbonyl C2 (Path-1). The minor fragment channel (Path-2) involves methylpropene elimination of the precursor ion, followed by a similar nucleophilic displacement reaction to produce another acid anion [R2-CO2](-). Density functional theory calculations at the B3LYP/6-31+G(d,p) level indicate that Path-1 is more favorable than Path-2 for dissociation of the deprotonated halofenozide

    Spatial Distribution of Soil Nutrients in Farmland in a Hilly Region of the Pearl River Delta in China Based on Geostatistics and the Inverse Distance Weighting Method

    No full text
    Soil nutrients are essential factors that reflect farmland quality. Nitrogen, phosphorus, and potassium are essential elements for plants, while silicon is considered a “quasi-essential” element. This study investigated the spatial distribution of plant nutrients in soil in a hilly region of the Pearl River Delta in China. A total of 201 soil samples were collected from farmland topsoil (0–20 cm) for the analysis of total nitrogen (TN), available phosphorus (AP), available potassium (AK), and available silicon (ASi). The coefficients of variation ranged from 47.88% to 76.91%. The NSRs of TN, AP, AK, and ASi were 0.15, 0. 07, 0.12, and 0.13, respectively. The NSRs varied from 0.02 to 0.20. All variables exhibited weak spatial dependence (R2 < 0.5), except for TN (R2 = 0.701). After comparing the prediction accuracy of the different methods, we used the inverse distance weighting method to analyze the spatial distribution of plant nutrients in soil. The uniform spatial distribution of AK, TN overall showed a trend of increasing from northeast to southwest, and the overall spatial distribution of AP and ASi showed that the northeast was higher than the southwest. This study provides support for the delimitation of basic farmland protection areas, the formulation of land use spatial planning, and the formulation of accurate farmland protection policies

    Effect of Binder Coatings on the Fracture Behavior of Polymer–Crystal Composite Particles Using the Discrete Element Method

    No full text
    Polymer–crystal composite particles formed by crystals coated with binders are widely used in the fields of medicine, energy, the chemical industry, and civil engineering. Binder content is an important factor in determining the mechanical behavior of composite particles. Therefore, this study aimed to investigate the underlying effect of binder coatings in the fracture micromechanics of polymer–crystal composite particles using the discrete element method (DEM). To achieve this objective, realistic particle and crystal shapes were first obtained and reconstructed based on X-ray micro-computed tomography (μCT) scanning and scanning electron microscope (SEM) images. A series of single particle crushing tests and DEM simulations were conducted on real and reconstructed polymer–crystal composite particles, respectively. Based on the experimental and DEM results, the effect of binder coatings on the crushing strength and crushing patterns of polymer–crystal composite particles was measured. Moreover, the micromechanics of the development and distribution of microcracks was further investigated to reveal the mechanism by which binder coatings affect polymer–crystal composite particles

    Non-intrusive Cable Fault Diagnosis Based on Inductive Directional Coupling

    No full text
    corecore