2,403 research outputs found

    An Isocurvature Mechanism for Structure Formation

    Get PDF
    We examine a novel mechanism for structure formation involving initial number density fluctuations between relativistic species, one of which then undergoes a temporary downward variation in its equation of state and generates superhorizon-scale density fluctuations. Isocurvature decaying dark matter models (iDDM) provide concrete examples. This mechanism solves the phenomenological problems of traditional isocurvature models, allowing iDDM models to fit the current CMB and large-scale structure data, while still providing novel behavior. We characterize the decaying dark matter and its decay products as a single component of ``generalized dark matter''. This simplifies calculations in decaying dark matter models and others that utilize this mechanism for structure formation.Comment: 4 pages, 3 figures, submitted to PRD (rapid communications

    Fluctuations in the Cosmic Microwave Background I: Form Factors and their Calculation in Synchronous Gauge

    Get PDF
    It is shown that the fluctuation in the temperature of the cosmic microwave background in any direction may be evaluated as an integral involving scalar and dipole form factors, which incorporate all relevant information about acoustic oscillations before the time of last scattering. A companion paper gives asymptotic expressions for the multipole coefficient Câ„“C_\ell in terms of these form factors. Explicit expressions are given here for the form factors in a simplified hydrodynamic model for the evolution of perturbations.Comment: 35 pages, no figures. Improved treatment of damping, including both Landau and Silk damping; inclusion of late-time effects; several references added; minor changes and corrections made. Accepted for publication in Phys. Rev. D1

    Fast, exact CMB power spectrum estimation for a certain class of observational strategies

    Get PDF
    We describe a class of observational strategies for probing the anisotropies in the cosmic microwave background (CMB) where the instrument scans on rings which can be combined into an n-torus, the {\em ring torus}. This class has the remarkable property that it allows exact maximum likelihood power spectrum estimation in of order N2N^2 operations (if the size of the data set is NN) under circumstances which would previously have made this analysis intractable: correlated receiver noise, arbitrary asymmetric beam shapes and far side lobes, non-uniform distribution of integration time on the sky and partial sky coverage. This ease of computation gives us an important theoretical tool for understanding the impact of instrumental effects on CMB observables and hence for the design and analysis of the CMB observations of the future. There are members of this class which closely approximate the MAP and Planck satellite missions. We present a numerical example where we apply our ring torus methods to a simulated data set from a CMB mission covering a 20 degree patch on the sky to compute the maximum likelihood estimate of the power spectrum Câ„“C_\ell with unprecedented efficiency.Comment: RevTeX, 14 pages, 5 figures. A full resolution version of Figure 1 and additional materials are at http://feynman.princeton.edu/~bwandelt/RT

    Can inflationary models of cosmic perturbations evade the secondary oscillation test?

    Get PDF
    We consider the consequences of an observed Cosmic Microwave Background (CMB) temperature anisotropy spectrum containing no secondary oscillations. While such a spectrum is generally considered to be a robust signature of active structure formation, we show that such a spectrum {\em can} be produced by (very unusual) inflationary models or other passive evolution models. However, we show that for all these passive models the characteristic oscillations would show up in other observable spectra. Our work shows that when CMB polarization and matter power spectra are taken into account secondary oscillations are indeed a signature of even these very exotic passive models. We construct a measure of the observability of secondary oscillations in a given experiment, and show that even with foregrounds both the MAP and \pk satellites should be able to distinguish between models with and without oscillations. Thus we conclude that inflationary and other passive models can {\em not} evade the secondary oscillation test.Comment: Final version accepted for publication in PRD. Minor improvements have been made to the discussion and new data has been included. The conclusions are unchagne

    Stochastic Theory of Accelerated Detectors in a Quantum Field

    Full text link
    We analyze the statistical mechanical properties of n-detectors in arbitrary states of motion interacting with each other via a quantum field. We use the open system concept and the influence functional method to calculate the influence of quantum fields on detectors in motion, and the mutual influence of detectors via fields. We discuss the difference between self and mutual impedance and advanced and retarded noise. The mutual effects of detectors on each other can be studied from the Langevin equations derived from the influence functional, as it contains the backreaction of the field on the system self-consistently. We show the existence of general fluctuation- dissipation relations, and for trajectories without event horizons, correlation-propagation relations, which succinctly encapsulate these quantum statistical phenomena. These findings serve to clarify some existing confusions in the accelerated detector problem. The general methodology presented here could also serve as a platform to explore the quantum statistical properties of particles and fields, with practical applications in atomic and optical physics problems.Comment: 32 pages, Late

    CMBfit: Rapid WMAP likelihood calculations with normal parameters

    Full text link
    We present a method for ultra-fast confrontation of the WMAP cosmic microwave background observations with theoretical models, implemented as a publicly available software package called CMBfit, useful for anyone wishing to measure cosmological parameters by combining WMAP with other observations. The method takes advantage of the underlying physics by transforming into a set of parameters where the WMAP likelihood surface is accurately fit by the exponential of a quartic or sextic polynomial. Building on previous physics based approximations by Hu et.al., Kosowsky et.al. and Chu et.al., it combines their speed with precision cosmology grade accuracy. A Fortran code for computing the WMAP likelihood for a given set of parameters is provided, pre-calibrated against CMBfast, accurate to Delta lnL ~ 0.05 over the entire 2sigma region of the parameter space for 6 parameter ``vanilla'' Lambda CDM models. We also provide 7-parameter fits including spatial curvature, gravitational waves and a running spectral index.Comment: 14 pages, 8 figures, References added, accepted for publication in Phys.Rev.D., a Fortran code can be downloaded from http://space.mit.edu/home/tegmark/cmbfit

    Decoherence and Initial Correlations in Quantum Brownian Motion

    Full text link
    We analyze the evolution of a quantum Brownian particle starting from an initial state that contains correlations between this system and its environment. Using a path integral approach, we obtain a master equation for the reduced density matrix of the system finding relatively simple expressions for its time dependent coefficients. We examine the evolution of delocalized initial states (Schr\"odinger's cats) investigating the effectiveness of the decoherence process. Analytic results are obtained for an ohmic environment (Drude's model) at zero temperature.Comment: 15 pages, RevTex, 5 figures included. Submitted to Phys. Rev.

    Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect

    Full text link
    We present a stochastic theory for the nonequilibrium dynamics of charges moving in a quantum scalar field based on the worldline influence functional and the close-time-path (CTP or in-in) coarse-grained effective action method. We summarize (1) the steps leading to a derivation of a modified Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical theory free of runaway solutions and without pre-acceleration patholigies, and (2) the transformation to a stochastic effective action which generates Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a particle's worldline around its semiclassical trajectory. We point out the misconceptions in trying to directly relate radiation reaction to vacuum fluctuations, and discuss how, in the framework that we have developed, an array of phenomena, from classical radiation and radiation reaction to the Unruh effect, are interrelated to each other as manifestations at the classical, stochastic and quantum levels. Using this method we give a derivation of the Unruh effect for the spacetime worldline coordinates of an accelerating charge. Our stochastic particle-field model, which was inspired by earlier work in cosmological backreaction, can be used as an analog to the black hole backreaction problem describing the stochastic dynamics of a black hole event horizon.Comment: Invited talk given by BLH at the International Assembly on Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1 figur

    Deconstructing Decoherence

    Get PDF
    The study of environmentally induced superselection and of the process of decoherence was originally motivated by the search for the emergence of classical behavior out of the quantum substrate, in the macroscopic limit. This limit, and other simplifying assumptions, have allowed the derivation of several simple results characterizing the onset of environmentally induced superselection; but these results are increasingly often regarded as a complete phenomenological characterization of decoherence in any regime. This is not necessarily the case: The examples presented in this paper counteract this impression by violating several of the simple ``rules of thumb''. This is relevant because decoherence is now beginning to be tested experimentally, and one may anticipate that, in at least some of the proposed applications (e.g., quantum computers), only the basic principle of ``monitoring by the environment'' will survive. The phenomenology of decoherence may turn out to be significantly different.Comment: 13 two-column pages, 3 embedded figure

    Decoherence by a nonlinear environment: canonical vs. microcanonical case

    Get PDF
    We compare decoherence induced in a simple quantum system (qubit) for two different initial states of the environment: canonical (fixed temperature) and microcanonical (fixed energy), for the general case of a fully interacting oscillator environment. We find that even a relatively compact oscillator bath (with the effective number of degrees of freedom of order 10), initially in a microcanonical state, will typically cause decoherence almost indistinguishable from that by a macroscopic, thermal environment, except possibly at singularities of the environment's specific heat (critical points). In the latter case, the precise magnitude of the difference between the canonical and microcanonical results depends on the critical behavior of the dissipative coefficient, characterizing the interaction of the qubit with the environment.Comment: 18 pages, revtex, 2 figures; minor textual changes, corrected typo in eq. (53) (v2); textual changes, mostly in the introduction (v3
    • …
    corecore