73 research outputs found
Energy Efficiency Optimization Design of a Forward-Swept Axial Flow Fan for Heat Pump
As one of the key components of the heat pump system, compared to that of a conventional axial fan, the blade tip area of a forward-swept axial fan is much larger than its blade root, which is the main noise source of the fan and also has an important influence on the fan efficiency. Enhancement of the aerodynamic performance and efficiency of a forward-swept axial fan was addressed by utilizing the Bezier function to parameterize the forward-swept curve on blade tops. In order to quickly select an agent model suitable for the project, an ES model was established by integration of the radial basis function model and the Kriging model. When NSGA-II was combined, multi-objective optimization was carried out with the flow rate and total pressure efficiency as optimization goals. Analysis of optimization results revealed that the optimized axial flow fan’s flow rate and total pressure efficiency were improved to some degree. At the design working point, the fan’s flow rate increased by 1.78 m³/min, while the total pressure efficiency increased by 3.0%. These results lay solid foundation for energy saving of the heat pump system
Recommended from our members
Femtosecond visualization of oxygen vacancies in metal oxides.
Oxygen vacancies often determine the electronic structure of metal oxides, but existing techniques cannot distinguish the oxygen-vacancy sites in the crystal structure. We report here that time-resolved optical spectroscopy can solve this challenge and determine the spatial locations of oxygen vacancies. Using tungsten oxides as examples, we identified the true oxygen-vacancy sites in WO2.9 and WO2.72, typical derivatives of WO3 and determined their fingerprint optoelectronic features. We find that a metastable band with a three-stage evolution dynamics of the excited states is present in WO2.9 but is absent in WO2.72. By comparison with model bandstructure calculations, this enables determination of the most closely neighbored oxygen-vacancy pairs in the crystal structure of WO2.72, for which two oxygen vacancies are ortho-positioned to a single W atom as a sole configuration among all O─W bonds. These findings verify the existence of preference rules of oxygen vacancies in metal oxides
Effects of inoculation of Lactiplantibacillus plantarum and Lentilactobacillus buchneri on fermentation quality, aerobic stability, and microbial community dynamics of wilted Leymus chinensis silage
Leymus chinensis is an important crop that can be fed to ruminants. The purpose of this study was to investigate the roles of Lactiplantibacillus plantarum and Lentilactobacillus buchneri in fermentation quality, aerobic stability, and dynamics of wilted L. chinensis silage microorganisms. Wilted L. chinensis silages were ensiled with/without L. plantarum and L. buchneri. After 14 and 56 days of ensiling, the silos were opened and subjected to a 7-day aerobic deterioration test. This study looked at the composition of fermentation products as well as the microbial communities in silage. Silage inoculated with L. plantarum and L. buchneri had an increased lactic acid content as well as lactic acid bacterial (LAB) quantity, but a decrease in pH and levels of butyric acid, 2,3-butanediol, and ethanol was observed during ensiling. Non-treated and L. plantarum-treated silages deteriorated in the 7-day spoilage test after opening day-14 silos, whereas L. buchneri-inoculated silage showed no signs of deterioration. Lactobacillus abundance increased in the 7-day spoilage test after opening day-56 silos, while undesirable microorganisms such as Acetobacter, Bacillus, and molds, namely, Aspergillus and Penicillium were inhibited within L. plantarum- and L. buchneri-inoculated silages. The composition of fermentation products was related to the bacterial community, particularly Lactobacillus, Enterococcus, and Acetobacter. To summarize, L. plantarum- and L. buchneri-inoculated silage enhanced fermentation quality during ensiling and inhibited aerobic spoilage in a 7-day spoilage test of 56 days ensiling within wilted L. chinensis silage
Crucial Breakthrough of Functional Persistent Luminescence Materials for Biomedical and Information Technological Applications
Persistent luminescence is a phenomenon in which luminescence is maintained for minutes to hours without an excitation source. Owing to their unique optical properties, various kinds of persistent luminescence materials (PLMs) have been developed and widely employed in numerous areas, such as bioimaging, phototherapy, data-storage, and security technologies. Due to the complete separation of two processes, —excitation and emission—, minimal tissue absorption, and negligible autofluorescence can be obtained during biomedical fluorescence imaging using PLMs. Rechargeable PLMs with super long afterglow life provide novel approaches for long-term phototherapy. Moreover, owing to the exclusion of external excitation and the optical rechargeable features, multicolor PLMs, which have higher decoding signal-to-noise ratios and high storage capability, exhibited an enormous application potential in information technology. Therefore, PLMs have significantly promoted the application of optics in the fields of multimodal bioimaging, theranostics, and information technology. In this review, we focus on the recently developed PLMs, including inorganic, organic and inorganic-organic hybrid PLMs to demonstrate their superior applications potential in biomedicine and information technology
Synthetic Datasets for Autonomous Driving: A Survey
Autonomous driving techniques have been flourishing in recent years while
thirsting for huge amounts of high-quality data. However, it is difficult for
real-world datasets to keep up with the pace of changing requirements due to
their expensive and time-consuming experimental and labeling costs. Therefore,
more and more researchers are turning to synthetic datasets to easily generate
rich and changeable data as an effective complement to the real world and to
improve the performance of algorithms. In this paper, we summarize the
evolution of synthetic dataset generation methods and review the work to date
in synthetic datasets related to single and multi-task categories for to
autonomous driving study. We also discuss the role that synthetic dataset plays
the evaluation, gap test, and positive effect in autonomous driving related
algorithm testing, especially on trustworthiness and safety aspects. Finally,
we discuss general trends and possible development directions. To the best of
our knowledge, this is the first survey focusing on the application of
synthetic datasets in autonomous driving. This survey also raises awareness of
the problems of real-world deployment of autonomous driving technology and
provides researchers with a possible solution.Comment: 19 pages, 5 figure
Compositional and predicted functional analysis of the gut microbiota of Radix auricularia (Linnaeus) via high-throughput Illumina sequencing
Due to its wide distribution across the world, the snail Radix auricularia plays a central role in the transferal of energy and biomass by consuming plant biomass in freshwater systems. The gut microbiota are involved in the nutrition, digestion, immunity, and development of snails, particularly for cellulolytic bacteria, which greatly contribute to the digestion of plant fiber. For the first time, this study characterized the gut bacterial communities of R. auricularia, as well as predicted functions, using the Illumina Miseq platform to sequence 16S rRNA amplicons. Both juvenile snails (JS) and adult snails (AS) were sampled. The obtained 251,072 sequences were rarefied to 214,584 sequences and clustered into 1,196 operational taxonomic units (OTUs) with 97% sequence identity. The predominant phyla were Proteobacteria (JS: 36.0%, AS: 31.6%) and Cyanobacteria (JS: 16.3%, AS: 19.5%), followed by Chloroflexi (JS: 9.7%, AS: 13.1%), Firmicutes (JS: 14.4%, AS: 6.7%), Actinobacteria (JS: 8.2%, AS: 12.6%), and Tenericutes (JS: 7.3%, AS: 6.2%). The phylum Cyanobacteria may have originated from the plant diet instead of the gut microbiome. A total of 52 bacterial families and 55 genera were found with >1% abundance in at least one sample. A large number of species could not be successfully identified, which could indicate the detection of novel ribotypes or result from insufficient availability of snail microbiome data. The core microbiome consisted of 469 OTUs, representing 88.4% of all sequences. Furthermore, the predicted function of bacterial community of R. auricularia performed by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States suggests that functions related to metabolism and environmental information processing were enriched. The abundance of carbohydrate suggests a strong capability of the gut microbiome to digest lignin. Our results indicate an abundance of bacteria in both JS and AS, and thus the bacteria in R. auricularia gut form a promising source for novel enzymes, such as cellulolytic enzymes, that may be useful for biofuel production. Furthermore, searching for xenobiotic biodegradation bacteria may be a further important application of these snails
Host species of freshwater snails within the same freshwater ecosystem shapes the intestinal microbiome
BackgroundFreshwater snails are not only intermediate hosts for parasites but also an important part of the food chain as they convert plant biomass and humus into animal biomass. However, being widely distributed in freshwater environments, snails are highly affected by human activities, which makes their adaptation to altering environments challenging. The gut microbiome helps animals in their digestion, immune system, growth and adapting to changing environments. The effect of host species on intestinal microbial community has been poorly studied in snails.MethodsIn this study, single-molecule real-time sequencing technology (SMRT) was used to obtain full-length 16S rRNA genes to determine the intestinal microbiomes of three species of freshwater snails (SQ: Sinotaia quadrata, BU: Boreoelona ussuriensis, RP: Radix plicatula) with similar feeding habits in a same water environment.ResultsUnifrac PCoA (P<0.05), hierarchical cluster and Ternary analyses showed distinct and significant segregation of the intestinal microbiomes of the three hosts. The phyla Cyanobacteria, Proteobacteria, Firmicutes and Planctomycetota dominated snail guts, comprising 93.47%, 86.22%, and 94.34% of the total reads in SQ, BU and RP, respectively. Of these, only 25.26% of OTUs were identified up to species level, while 72.07% of OTUs were identified at the genus level. Although 72.94% of the total bacterial species (566) were common to three snails, significant differences were observed in terms of their abundance (P < 0.05). Several genera can help to determine the phenotype of the intestinal microbiota. In this case, Lelliottia contributed mainly to stress tolerance, biofilm formation, potential pathogenicity, mobile elements and facultatively anaerobic phenotypes in RP. Furthermore, Romboutsia and Clostridium_sensu_stricto_1 contributed to the anaerobic phenotype of SQ and RP, while Pirellula contributed to the aerobic phenotype in SQ. Moreover, PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) predicted 68 GH (glycoside hydrolase) genes, with these including monosaccharide-, disaccharide-, polysaccharide-, and starch-digesting enzyme genes as well as enzymes specific to aquatic plants. Many of the identified pathways were related to Infectious diseases and Xenobiotics biodegradation and metabolism, which expanded the resistance of freshwater snails.ConcludesLelliottia, Romboutsia, Clostridium_sensu_stricto_1, and Pirellula play an important role in the intestinal microbiota phenotype of the host snails. In general, the host species affects the structure of the gut microbial community, which in turn helps gastropods improve their environmental adaptability, but further study is still needed
Fermentation quality, aerobic stability, and microbiome structure and function of Caragana korshinskii silage inoculated with/without Lactobacillus rhamnosus or Lactobacillus buchneri
Caragana korshinskii is a forage shrub species with high-protein content that has been extensively used to alleviate feed shortages for ruminants in northern China. Herein, we investigated the effects of Lactobacillus rhamnosus and Lactobacillus buchneri on the fermentation quality, aerobic stability, and microbiome composition and the predicted functional characteristics of C. korshinskii silage. C. korshinskii silages were inoculated with and without L. rhamnosus or L. buchneri. After 14 and 56 days of ensiling, the aerobic stability was determined. The results revealed that after 14 and 56 days of ensiling, L. rhamnosus- and L. buchneri-inoculated silage exhibited increased acetic acid and lactic acid contents, whereas the pH and 2,3-butanediol and butyric acid contents were decreased compared with those of the control silage. The control silages that were opened at 14 and 56 d, deteriorated during the aerobic stability test, whereas silages inoculated with L. rhamnosus and L. buchneri did not exhibit any aerobic deterioration. The control silage showed an increased Clostridium and Bacillus abundance, whereas Lactobacillus abundance decreased compared with L. rhamnosus- and L. buchneri-inoculated silages, following the 7 days of aerobic exposure. The fermentation parameters were associated with microbial communities, including Lactobacillus, Pedicoccus, Weissella, Clostridium, and Bacillus. Carbohydrate and amino acid metabolisms in the control silage decreased after 7 days of aerobic exposure compared with lactic acid bacteria-inoculated silages. To conclude, next-generation sequencing combined with 16S ribosomal RNA gene-predicted functional analyses might provide new information about the silage quality during fermentation and the aerobic stability
- …