390 research outputs found

    Many-body ground state localization and coexistence of localized and extended states in an interacting quasiperiodic system

    Full text link
    We study the localization problem of one-dimensional interacting spinless fermions in an incommensurate optical lattice, which changes from an extended phase to a nonergoic many-body localized phase by increasing the strength of the incommensurate potential. We identify that there exists an intermediate regime before the system enters the many-body localized phase, in which both the localized and extended many-body states coexist, thus the system is divided into three different phases, which can be characterized by normalized participation ratios of the many-body eigenstates and distributions of natural orbitals of the corresponding one-particle density matrix. This is very different from its noninterating limit, in which all eigenstaes undergo a delocaliztion-localization transtion when the strength of the incommensurate potential exceeds a critical value.Comment: 5 pages, 6 figure

    Ferromagnetic to antiferromagnetic transition of one-dimensional spinor Bose gases with spin-orbit coupling

    Full text link
    We have analytically solved one-dimensional interacting two-component bosonic gases with spin-orbit (SO) coupling by the Bethe-ansatz method. Through a gauge transformation, the effect of SO coupling is incorporated into a spin-dependent twisted boundary condition. Our result shows that the SO coupling can influence the eigenenergy in a periodical pattern. The interplay between interaction and SO coupling may induce the energy level crossing for the ground state, which leads to a transition from the ferromagnetic to antiferromagnetic state.Comment: 6 pages, 4 figure
    • …
    corecore