19 research outputs found

    Multi-Effects Coupled Nanogenerators for Simultaneously Harvesting Solar, Thermal, and Mechanical Energies

    Get PDF
    As a result of the widespread use of small-scale and low-power electronic devices, the demand for micro-energy sources has increased, in particular the potential to harvest the wide variety of energy sources present in their surrounding environment. In this paper, a novel coupled nanogenerator that can realize energy harvesting for multiple energy sources is reported. Based on the unique electrical properties of ferroelectric Bi 0.5Na 0.5TiO 3 (BNT) materials, it is possible to combine a photovoltaic cell, pyroelectric nanogenerator, and triboelectric-piezoelectric nanogenerator in a single element to harvest light, heat, and mechanical energy simultaneously. To evaluate the effectiveness of coupling for different materials, a Yang coupling factor (k C,Q) is defined in terms of transferred charge, where BNT has the largest k C,Q of 1.29 during heating, indicating that BNT has the best coupling enhancement compared to common ferroelectric materials. This new criterion and novel device structure therefore provide a new basis for the future development of coupled nanogenerators which are capable of harvesting multiple sources of energy.</p

    Whole-genome microRNA sequencing analysis in patients with pulmonary hypertension

    Get PDF
    Pulmonary hypertension (PH) is a pathological disorder with multiple clinical manifestations that lead to cardiovascular and respiratory diseases in most patients. Recent studies have revealed that microRNAs (miRNAs) play important roles as upstream signaling molecules in several diseases, including PH. However, miRNAs that can be used as diagnostic or prognostic biomarkers for PH have not been identified. Thus, in this study, peripheral blood samples obtained from patients with PH and healthy individuals were subjected to genome-wide miRNA sequencing and transcriptome analysis. We screened 136 differentially expressed miRNAs in patients with PH and verified that four differentially expressed miRNAs, namely, hsa-miR-1304-3p, hsa-miR-490-3p, hsa-miR-11400, and hsa-miR-31-5p, could be used as clinical diagnostic biomarkers for pulmonary arterial hypertension. Our findings provide a basis for further in-depth investigations of the specific mechanisms of miRNAs in PH

    A droplet-based triboelectric-piezoelectric hybridized nanogenerator for scavenging mechanical energy

    No full text
    Water droplet energy has received much attention as a newborn renewable energy source. Triboelectric nano -generators (TENGs) demonstrates enormous application in scavenging mechanical energy. Nowadays, the water droplet nanogenerator based on liquid-solid TENG has been greatly improved. However, these water droplet nanogenerators scavenge the mechanical energy of liquid-solid contact of water droplets by TENG, but not the deformation energy of the substrate. Here, we propose a new design strategy to increase the current of the water droplet nanogenerator through simultaneous scavenging of the mechanical energy of the liquid-solid contact and the deformation energy. A droplet-based triboelectric-piezoelectric hybridized nanogenerator (TPiHNG) with cantilever beam structure was fabricated under the strategy. The TPiHNG has a significantly higher current compared to TENG. The response time difference between piezoelectric nanogenerator (PiENG) and TENG is proposed for the first time as an important parameter of TPiHNG. This work provides a novel approach to scavenge water droplet energy more efficiently

    Intensification of phosphorus cycling in china since the 1600s

    No full text
    Phosphorus (P) is an essential nutrient for living systems with emerging sustainability challenges related to supply uncertainty and aquatic eutrophication. However, its long-term temporal dynamics and subsequent effects on freshwater ecosystems are still unclear. Here, we quantify the P pathways across China over the past four centuries with a life cycle process-balanced model and evaluate the concomitant potential for eutrophication with a spatial resolution of 5 arc-minutes in 2012. We find that P cycling in China has been artificially intensified during this period to sustain the increasing population and its demand for animal protein-based diets, with continuous accumulations in inland waters and lands. In the past decade, China\u27s international trade of P involves net exports of P chemicals and net imports of downstream crops, specifically soybeans from the United States, Brazil, and Argentina. The contribution of crop products to per capita food P demand, namely, the P directly consumed by humans, declined from over 98% before the 1950s to 76% in 2012, even though there was little change in per capita food P demand. Anthropogenic P losses to freshwater and their eutrophication potential clustered in wealthy coastal regions with dense populations. We estimate that Chinese P reserve depletion could be postponed for over 20 y by more efficient life cycle P management. Our results highlight the importance of closing the P cycle to achieve the cobenefits of P resource conservation and eutrophication mitigation in the world\u27s most rapidly developing economy

    Intensification of phosphorus cycling in china since the 1600s

    No full text
    Phosphorus (P) is an essential nutrient for living systems with emerging sustainability challenges related to supply uncertainty and aquatic eutrophication. However, its long-term temporal dynamics and subsequent effects on freshwater ecosystems are still unclear. Here, we quantify the P pathways across China over the past four centuries with a life cycle process-balanced model and evaluate the concomitant potential for eutrophication with a spatial resolution of 5 arc-minutes in 2012. We find that P cycling in China has been artificially intensified during this period to sustain the increasing population and its demand for animal protein-based diets, with continuous accumulations in inland waters and lands. In the past decade, China's international trade of P involves net exports of P chemicals and net imports of downstream crops, specifically soybeans from the United States, Brazil, and Argentina. The contribution of crop products to per capita food P demand, namely, the P directly consumed by humans, declined from over 98% before the 1950s to 76% in 2012, even though there was little change in per capita food P demand. Anthropogenic P losses to freshwater and their eutrophication potential clustered in wealthy coastal regions with dense populations. We estimate that Chinese P reserve depletion could be postponed for over 20 y by more efficient life cycle P management. Our results highlight the importance of closing the P cycle to achieve the cobenefits of P resource conservation and eutrophication mitigation in the world's most rapidly developing economy

    Role of crescents for lupus nephritis in clinical, pathological and prognosis: a single-center retrospective cohort study

    No full text
    Abstract Background Referring to the International Society of Nephrology/Renal Pathology Society (ISN/RPS) 2018 pathological classification, we aim to reveal the significance of cellular/fibrocellular crescents in lupus nephritis (LN) patients. Methods Patients with LN proven by renal biopsy at the First Affiliated Hospital of Wenzhou Medical University from December 2001 to November 2017 were identified, and eligible cases were divided into two groups according to the presence or absence of cellular/fibrocellular crescents in renal biopsy tissues. Results A total of 401 LN patients were identified from our follow-up database, and 296 eligible LN patients were enrolled in the study. Of these patients, 146 patients in the group without cellular/fibrocellular crescents (non-crescent group) and 150 patients in the group with cellular/fibrocellular crescents (Crescent group). The median follow-up time of patients was 47 months, and a total of 54 patients progressed to the composite endpoint. Crescent group had higher serum creatinine, lower serum albumin, higher systemic lupus erythematosus (SLE) disease activity index, and higher activity index of renal tissue. The interaction between cellular/fibrocellular crescents and proteinuria at baseline was associated with the prognostic risk of LN (P = 0.006). In the group with proteinuria < 3.5 g/24 h, the prognosis of crescent group was significantly worse than of non-crescent group (P < 0.001), while in the group with proteinuria ≥ 3.5 g/24 h, there was no significant relationship between crescents and prognosis (p = 0.452). By multivariable Cox hazard analysis, positive anti-dsDNA, chronic index of renal biopsy tissue, cellular/fibrocellular crescents and its interaction with 24 h proteinuria were independent risk factors for poor prognosis of LN. Conclusions LN patients with cellular/fibrocellular crescents had more severe and active disease features, and cellular/fibrocellular crescents is a risk factor for poor prognosis of LN. There was an interaction between cellular/fibrocellular crescents and proteinuria in predicting poor prognosis, and among patients with low levels of proteinuria at the time of renal biopsy, those with crescents had a worse long-term prognosis than those without crescents
    corecore