74 research outputs found
Recent Progress of Catalytic Cathodes for Lithium-oxygen Batteries
Lithium-oxygen batteries are among the most promising electrochemical energy storage systems, which have attracted significant attention in the past few years duo to its far more energy density than lithium-ion batteries. Lithium oxygen battery energy storage is a reactive storage mechanism, and the discharge and charge processes are usually called oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Consequently, complex systems usually create complex problems, lithium oxygen batteries also face many problems, such as excessive accumulation of discharge products (Li2O2) in the cathode pores, resulting in reduced capacity, unstable cycling performance and so on. Cathode catalyst, which could influence the kinetics of OER and ORR in lithium oxygen (Li-O2) battery, is one of the decisive factors to determine the electrochemical performance of the battery, so the design of cathode catalyst is vitally important. This review discusses the catalytic cathode materials, which are divided into four parts, carbon based materials, metals and metal oxides, composite materials and other materials
The mitochondrial gene orfH79 plays a critical role in impairing both male gametophyte development and root growth in CMS-Honglian rice
<p>Abstract</p> <p>Background</p> <p>Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene <it>orfH79 </it>is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the <it>orfH79 </it>expression can actually induce CMS in rice remains unclear.</p> <p>Results</p> <p>Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA).</p> <p>Conclusion</p> <p>These results suggest that the expression of <it>orfH79 </it>in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.</p
Superior glucose metabolism supports NH4+ assimilation in wheat to improve ammonium tolerance
The use of slow-release fertilizers and seed-fertilizers cause localized high-ammonium (NH4+) environments in agricultural fields, adversely affecting wheat growth and development and delaying its yield. Thus, it is important to investigate the physiological responses of wheat and its tolerance to NH4+ stress to improve the adaptation of wheat to high NH4+ environments. In this study, the physiological mechanisms of ammonium tolerance in wheat (Triticum aestivum) were investigated in depth by comparative analysis of two cultivars: NH4+-tolerant Xumai25 and NH4+-sensitive Yangmai20. Cultivation under hydroponic conditions with high NH4+ (5 mM NH4+, AN) and nitrate (5 mM NO3-, NN), as control, provided insights into the nuanced responses of both cultivars. Compared to Yangmai20, Xumai25 displayed a comparatively lesser sensitivity to NH4+ stress, as evident by a less pronounced reduction in dry plant biomass and a milder adverse impact on root morphology. Despite similarities in NH4+ efflux and the expression levels of TaAMT1.1 and TaAMT1.2 between the two cultivars, Xumai25 exhibited higher NH4+ influx, while maintaining a lower free NH4+ concentration in the roots. Furthermore, Xumai25 showed a more pronounced increase in the levels of free amino acids, including asparagine, glutamine, and aspartate, suggesting a superior NH4+ assimilation capacity under NH4+ stress compared to Yangmai20. Additionally, the enhanced transcriptional regulation of vacuolar glucose transporter and glucose metabolism under NH4+ stress in Xumai25 contributed to an enhanced carbon skeleton supply, particularly of 2-oxoglutarate and pyruvate. Taken together, our results demonstrate that the NH4+ tolerance of Xumai25 is intricately linked to enhanced glucose metabolism and optimized glucose transport, which contributes to the robust NH4+ assimilation capacity
Quantitative evaluation of maximum operating pressure and storage capacity for gas-top sandstone reservoir-type gas storage
Objective The maximum operating pressure for underground gas storage facilities designed for oil and gas reservoirs, both constructed and under construction in China, is currently set at the original formation pressure. There have yet to be successful cases of overpressure operation, which significantly impacts the economic benefits of converting depleted oil and gas reservoirs into underground gas storage facilities. This article aims to evaluate the maximum operating pressure and storage capacity of the Nanpu 1-29 gas storage facility from the perspective of the ultimate bearing capacity of cap layers and faults, with the goal of effectively enhancing the construction benefits of the facility. Methods The evaluation of the maximum operating pressure for the Nanpu 1-29 gas storage facility in eastern Hebei is based on the minimum principal stress measured in situ in the mining wells. Different effective porosity calculation methods are employed to quantitatively evaluate the effective storage capacity of gas and oil reservoirs, as well as the incremental capacity after pressure boosting operation, based on their development differences. Results The evaluation of the maximum operating pressure for the Nanpu 1-29 gas storage facility indicates that the minimum principal stress of the cap layers determined by the in-situ measurements in the mining wells is 34.00 MPa. Based on the tensile failure criteria determined by the minimum principal stress, the maximum operating pressure for the tensile failure of the cap layer is 27.20 MPa. Combined with the maximum safe injection pressure corresponding to shear failure of the cap layer (30.60 MPa) and the maximum safe injection pressure corresponding to unstable slip of the fault (27.60 MPa), the final maximum operating pressure for the Nanpu 1-29 gas storage facility is determined to be 27.20 MPa. Based on the effective storage capacity calculation model, considering factors such as the water content of the gas reservoir, residual water and edge porosity as well as the coefficient of influence, the efficiency of gas-driven fluid, and the utilization rate of oil-containing space, the maximum operating pressure increased from the original formation pressure of 22.50 MPa to 27.20 MPa. The practical storage capacity of the gas storage facility increased from 15.46×108 m3 to 18.14×108 m3, an increase of approximately 17.3%. Conclusion (1) The construction of gas storage facilities can be re-evaluated for the maximum operating pressure based on the minimum principal stress measured in situ in the mining wells, and overpressure design can be conducted under appropriate conditions. (2) Overpressure design can effectively increase storage capacity and improve the economic benefits of reservoir construction. Significance The research results have a certain reference value for the quantitative evaluation of the maximum operating pressure and storage capacity of other underground gas storage facilities, and are expected to significantly improve the economic benefits of overpressure-designed reservoir-type gas storage facilities in China
Analysis of risk factors for deep vein thrombosis after spinal infection surgery and construction of a nomogram preoperative prediction model
ObjectiveTo investigate the differences in postoperative deep venous thrombosis (DVT) between patients with spinal infection and those with non-infected spinal disease; to construct a clinical prediction model using patients’ preoperative clinical information and routine laboratory indicators to predict the likelihood of DVT after surgery.MethodAccording to the inclusion criteria, 314 cases of spinal infection (SINF) and 314 cases of non-infected spinal disease (NSINF) were collected from January 1, 2016 to December 31, 2021 at Xiangya Hospital, Central South University, and the differences between the two groups in terms of postoperative DVT were analyzed by chi-square test. The spinal infection cases were divided into a thrombotic group (DVT) and a non-thrombotic group (NDVT) according to whether they developed DVT after surgery. Pre-operative clinical information and routine laboratory indicators of patients in the DVT and NDVT groups were used to compare the differences between groups for each variable, and variables with predictive significance were screened out by least absolute shrinkage and operator selection (LASSO) regression analysis, and a predictive model and nomogram of postoperative DVT was established using multi-factor logistic regression, with a Hosmer- Lemeshow goodness-of-fit test was used to plot the calibration curve of the model, and the predictive effect of the model was evaluated by the area under the ROC curve (AUC).ResultThe incidence of postoperative DVT in patients with spinal infection was 28%, significantly higher than 16% in the NSINF group, and statistically different from the NSINF group (P < 0.000). Five predictor variables for postoperative DVT in patients with spinal infection were screened by LASSO regression, and plotted as a nomogram. Calibration curves showed that the model was a good fit. The AUC of the predicted model was 0.8457 in the training cohort and 0.7917 in the validation cohort.ConclusionIn this study, a nomogram prediction model was developed for predicting postoperative DVT in patients with spinal infection. The nomogram included five preoperative predictor variables, which would effectively predict the likelihood of DVT after spinal infection and may have greater clinical value for the treatment and prevention of postoperative DVT
ORP4L Extracts and Presents PIP2 from Plasma Membrane for PLC beta 3 Catalysis : Targeting It Eradicates Leukemia Stem Cells
Leukemia stem cells (LSCs) are a rare subpopulation of abnormal hematopoietic stem cells (HSCs) that propagates leukemia and are responsible for the high frequency of relapse in therapies. Detailed insights into LSCs' survival will facilitate the identification of targets for therapeutic approaches. Here, we develop an inhibitor, LYZ-81, which targets ORP4L with high affinity and specificity and selectively eradicates LCSs in vitro and in vivo. ORP4L is expressed in LSCs but not in normal HSCs and is essential for LSC bioenergetics and survival. It extracts PIP2 from the plasma membrane and presents it to PLC beta 3, enabling IP3 generation and subsequentCa(2+)-dependent bioenergetics. LYZ-81 binds ORP4L competitively with PIP2 and blocks PIP2 hydrolysis, resulting in defective Ca2+ signaling. The results provide evidence that LSCs can be eradicated through the inhibition of ORP4L by LYZ-81, which may serve as a starting point of drug development for the elimination of LSCs to eventually cure leukemia.Peer reviewe
Evidence of solid-solution reaction upon lithium insertion into cryptomelane K0.25Mn2O4 material
Cryptomelane-type K0.25Mn2O4 material is prepared via a template-free, one-step hydrothermal method. Cryptomelane K0.25Mn2O4 adopts an I 4/m tetragonal structure with a distinct tunnel feature built from MnO6 units. Its structural stability arises from the inherent stability of the MnO6 framework which hosts potassium ions, which in turn permits faster ionic diffusion, making the material attractive for application as a cathode in lithium-ion batteries. Despite this potential use, the phase transitions and structural evolution of cryptomelane during lithiation and delithiation remains unclear. The coexistence of Mn3+ and Mn4+ in the compound during lithiation and delithiation processes induce different levels of Jahn-Teller distortion, further complicating the lattice evolution. In this work, the lattice evolution of the cryptomelane K0.25Mn2O4 during its function as a cathode within a lithium-ion battery is measured in a customized coin-cell using in-situ synchrotron X-ray diffraction. We find that the lithiation-delithiation of cryptomelane cathode proceeds through a solid-solution reaction, associated with variations of the a and c lattice parameters and a reversible strain effect induced by Jahn-Teller distortion ofMn3+. The lattice parameter changes and the strain are quantified in this work, with the results demonstrating that cryptomelane is a relatively good candidate cathode material for lithium-ion battery use
The Dynamic Correlation and Volatility Spillover among Green Bonds, Clean Energy Stock, and Fossil Fuel Market
This study employs mainly the Bayesian DCC-MGARCH model and frequency connectedness methods to respectively examine the dynamic correlation and volatility spillover among the green bond, clean energy, and fossil fuel markets using daily data from 30 June 2014 to 18 October 2021. Three findings arose from our results: First, the green bond market has a weak negative correlation with the fossil fuel (WTI oil, Brent oil, natural gas, heating oil, and gasoline) and clean energy markets, which means that green bonds play a critical hedging role against fossil fuel and clean energy. Second, the green bond and clean energy are net volatility receivers from WTI crude oil and heating oil for the short term, indicating that investors and policymakers need to pay attention to the WTI oil volatility spillover risk when promoting green bonds and clean energy. Third, the correlation and volatility spillover from WTI crude oil to green bonds and clean energy is stronger than that of Brent oil, which implies that investors and policymakers need to consider the price movements of WTI crude oil more than Brent oil when investing in the green bond market. In summary, our conclusion is that investors should be aware that green bond investing addresses the two-pronged investment strategy of (i) risk diversification and (ii) carbon mitigation. Thus, this study can provide essential information for energy investors and policymakers to achieve sustainable investment
- …