12,613 research outputs found

    Confidence Estimation Using Unlabeled Data

    Full text link
    Overconfidence is a common issue for deep neural networks, limiting their deployment in real-world applications. To better estimate confidence, existing methods mostly focus on fully-supervised scenarios and rely on training labels. In this paper, we propose the first confidence estimation method for a semi-supervised setting, when most training labels are unavailable. We stipulate that even with limited training labels, we can still reasonably approximate the confidence of model on unlabeled samples by inspecting the prediction consistency through the training process. We use training consistency as a surrogate function and propose a consistency ranking loss for confidence estimation. On both image classification and segmentation tasks, our method achieves state-of-the-art performances in confidence estimation. Furthermore, we show the benefit of the proposed method through a downstream active learning task. The code is available at https://github.com/TopoXLab/consistency-ranking-lossComment: Accepted by ICLR'2

    Learning Probabilistic Topological Representations Using Discrete Morse Theory

    Full text link
    Accurate delineation of fine-scale structures is a very important yet challenging problem. Existing methods use topological information as an additional training loss, but are ultimately making pixel-wise predictions. In this paper, we propose the first deep learning based method to learn topological/structural representations. We use discrete Morse theory and persistent homology to construct an one-parameter family of structures as the topological/structural representation space. Furthermore, we learn a probabilistic model that can perform inference tasks in such a topological/structural representation space. Our method generates true structures rather than pixel-maps, leading to better topological integrity in automatic segmentation tasks. It also facilitates semi-automatic interactive annotation/proofreading via the sampling of structures and structure-aware uncertainty.Comment: 16 pages, 11 figure

    Exploring the total Galactic extinction with SDSS BHB stars

    Full text link
    Aims: We used 12,530 photometrically-selected blue horizontal branch (BHB) stars from the Sloan Digital Sky Survey (SDSS) to estimate the total extinction of the Milky Way at the high Galactic latitudes, RVR_V and AVA_V in each line of sight. Methods: A Bayesian method was developed to estimate the reddening values in the given lines of sight. Based on the most likely values of reddening in multiple colors, we were able to derive the values of RVR_V and AVA_V. Results: We selected 94 zero-reddened BHB stars from seven globular clusters as the template. The reddening in the four SDSS colors for the northern Galactic cap were estimated by comparing the field BHB stars with the template stars. The accuracy of this estimation is around 0.01\,mag for most lines of sight. We also obtained to be around 2.40±1.05\pm1.05 and AVA_V map within an uncertainty of 0.1\,mag. The results, including reddening values in the four SDSS colors, AVA_V, and RVR_V in each line of sight, are released on line. In this work, we employ an up-to-date parallel technique on GPU card to overcome time-consuming computations. We plan to release online the C++ CUDA code used for this analysis. Conclusions: The extinction map derived from BHB stars is highly consistent with that from Schlegel, Finkbeiner & Davis(1998). The derived RVR_V is around 2.40±1.05\pm1.05. The contamination probably makes the RVR_V be larger.Comment: 16 pages, 13 figures, 4 tables, accepted for publication in A&
    • …
    corecore