1,198 research outputs found
Stochastic Theory of Accelerated Detectors in a Quantum Field
We analyze the statistical mechanical properties of n-detectors in arbitrary
states of motion interacting with each other via a quantum field. We use the
open system concept and the influence functional method to calculate the
influence of quantum fields on detectors in motion, and the mutual influence of
detectors via fields. We discuss the difference between self and mutual
impedance and advanced and retarded noise. The mutual effects of detectors on
each other can be studied from the Langevin equations derived from the
influence functional, as it contains the backreaction of the field on the
system self-consistently. We show the existence of general fluctuation-
dissipation relations, and for trajectories without event horizons,
correlation-propagation relations, which succinctly encapsulate these quantum
statistical phenomena. These findings serve to clarify some existing confusions
in the accelerated detector problem. The general methodology presented here
could also serve as a platform to explore the quantum statistical properties of
particles and fields, with practical applications in atomic and optical physics
problems.Comment: 32 pages, Late
Uniformly Accelerated Charge in a Quantum Field: From Radiation Reaction to Unruh Effect
We present a stochastic theory for the nonequilibrium dynamics of charges
moving in a quantum scalar field based on the worldline influence functional
and the close-time-path (CTP or in-in) coarse-grained effective action method.
We summarize (1) the steps leading to a derivation of a modified
Abraham-Lorentz-Dirac equation whose solutions describe a causal semiclassical
theory free of runaway solutions and without pre-acceleration patholigies, and
(2) the transformation to a stochastic effective action which generates
Abraham-Lorentz-Dirac-Langevin equations depicting the fluctuations of a
particle's worldline around its semiclassical trajectory. We point out the
misconceptions in trying to directly relate radiation reaction to vacuum
fluctuations, and discuss how, in the framework that we have developed, an
array of phenomena, from classical radiation and radiation reaction to the
Unruh effect, are interrelated to each other as manifestations at the
classical, stochastic and quantum levels. Using this method we give a
derivation of the Unruh effect for the spacetime worldline coordinates of an
accelerating charge. Our stochastic particle-field model, which was inspired by
earlier work in cosmological backreaction, can be used as an analog to the
black hole backreaction problem describing the stochastic dynamics of a black
hole event horizon.Comment: Invited talk given by BLH at the International Assembly on
Relativistic Dynamics (IARD), June 2004, Saas Fee, Switzerland. 19 pages, 1
figur
Coarse-Graining and Renormalization Group in the Einstein Universe
The Kadanoff-Wilson renormalization group approach for a scalar
self-interacting field theor generally coupled with gravity is presented. An
average potential that monitors the fluctuations of the blocked field in
different scaling regimes is constructed in a nonflat background and explicitly
computed within the loop-expansion approximation for an Einstein universe. The
curvature turns out to be dominant in setting the crossover scale from a
double-peak and a symmetric distribution of the block variables. The evolution
of all the coupling constants generated by the blocking procedure is examined:
the renormalized trajectories agree with the standard perturbative results for
the relevant vertices near the ultraviolet fixed point, but new effective
interactions between gravity and matter are present. The flow of the conformal
coupling constant is therefore analyzed in the improved scheme and the infrared
fixed point is reached for arbitrary values of the renormalized parameters.Comment: 18 pages, REVTex, two uuencoded figures. (to appear in Phys. Rev.
D15, July) Transmission errors have been correcte
Impacts of environmental factors and human disturbance on composition of roadside vegetation in Xishuangbanna National Nature Reserve of Southwest China
AbstractVegetation-disturbance-environment relationships in Xishuangbanna Nature Reserve (XNR) was examined using multivariate analysis to understand the impacts of environmental factors and human disturbance on vegetation along the highway corridor. The results show that native forests were the best habitat for protected/endangered species and native species. The exotic plants Eupatorium odoratum and Eupatorium adenophora were found primarily in secondary forests and their presence was positively associated with altitude and soil potassium concentrations. The distribution of two protected plants, Phoebe nanmu and Pometia tomentosa, was negatively associated with road disturbance. Understanding the complex effects of environmental factors and human disturbance is key for developing conservation and restoration strategies for roadside plant ecosystems
Noise Kernel and Stress Energy Bi-Tensor of Quantum Fields in Hot Flat Space and Gaussian Approximation in the Optical Schwarzschild Metric
Continuing our investigation of the regularization of the noise kernel in
curved spacetimes [N. G. Phillips and B. L. Hu, Phys. Rev. D {\bf 63}, 104001
(2001)] we adopt the modified point separation scheme for the class of optical
spacetimes using the Gaussian approximation for the Green functions a la
Bekenstein-Parker-Page. In the first example we derive the regularized noise
kernel for a thermal field in flat space. It is useful for black hole
nucleation considerations. In the second example of an optical Schwarzschild
spacetime we obtain a finite expression for the noise kernel at the horizon and
recover the hot flat space result at infinity. Knowledge of the noise kernel is
essential for studying issues related to black hole horizon fluctuations and
Hawking radiation backreaction. We show that the Gaussian approximated Green
function which works surprisingly well for the stress tensor at the
Schwarzschild horizon produces significant error in the noise kernel there. We
identify the failure as occurring at the fourth covariant derivative order.Comment: 21 pages, RevTeX
Spin-Charge Separation and Kinetic Energy in the t-J Model
I show that spin-charge separation in 2-D t-J model leads to an increase of
kinetic energy. Using a sum rule, I derive an exact expression for the lowest
possible KE (E_{bound}) for any state without doubly occupied sites. KE of
relevant slave-boson and Schwinger-boson mean-field states -- which exhibit
complete spin-charge separation -- are found to be much larger than E_{bound}.
Examination of n(k) shows that the large increse in KE is due to excessive
depletion of electrons from the bottom of the band (Schwinger boson) and of
holes from the top (slave boson). To see whether the excess KE is simply due to
poor treatment of the constraints, I solve the constraint problem analytically
for the Schwinger boson case in the J = 0 limit. This restores gauge
invariance, incorrectly violated in MF theories. The result is a generalized
Hartree-Fock state of the Hubbard model, but one that includes spin waves. Even
after constraints are imposed correctly, the KE remains much larger than
E_{bound}. These results support the notion, advanced earlier [PRB 61, 8663
(2000)] that spin-charge separation in the MF state costs excessive KE, and
makes the state unstable toward recombination processes which lead to
superconductivity in d = 2 and a Fermi liquid state in higher dimensions.Comment: 13 pages, LateX plus three figures. To appear in Phys Rev B Typos
correcte
Modal nudging in nonlinear elasticity: tailoring the elastic post-buckling behaviour of engineering structures
The buckling and post-buckling behaviour of slender structures is increasingly being harnessed for smart functionalities. Equally, the post-buckling regime of many traditional engineering structures is not being used for design and may therefore harbour latent load-bearing capacity for further structural efficiency. Both applications can benefit from a robust means of modifying and controlling the post-buckling behaviour for a specific purpose. To this end, we introduce a structural design paradigm termed modal nudging, which can be used to tailor the post-buckling response of slender engineering structures without any significant increase in mass. Modal nudging uses deformation modes of stable post-buckled equilibria to perturb the undeformed baseline geometry of the structure imperceptibly, thereby favouring the seeded post-buckling response over potential alternatives. The benefits of this technique are enhanced control over the post-buckling behaviour, such as modal differentiation for smart structures that use snap-buckling for shape adaptation, or alternatively, increased load-carrying capacity, increased compliance or a shift from imperfection sensitivity to imperfection insensitivity. Although these concepts are, in theory, of general applicability, we concentrate here on planar frame structures analysed using the nonlinear finite element method and numerical continuation procedures. Using these computational techniques, we show that planar frame structures may exhibit isolated regions of stable equilibria in otherwise unstable post-buckling regimes, or indeed stable equilibria entirely disconnected from the natural structural response. In both cases, the load-carrying capacity of these isolated stable equilibria is greater than the natural structural response of the frames. Using the concept of modal nudging it is possible to “nudge” the frames onto these equilibrium paths of greater load-carrying capacity. Due to the scale invariance of modal nudging, these findings may impact the design of structures from the micro- to the macro-scale
Alignment of galaxy spins in the vicinity of voids
We provide limits on the alignment of galaxy orientations with the direction
to the void center for galaxies lying near the edges of voids. We locate
spherical voids in volume limited samples of galaxies from the Sloan Digital
Sky Survey using the HB inspired void finder and investigate the orientation of
(color selected) spiral galaxies that are nearly edge-on or face-on. In
contrast with previous literature, we find no statistical evidence for
departure from random orientations. Expressed in terms of the parameter c,
introduced by Lee & Pen to describe the strength of such an alignment, we find
that c<0.11(0.13) at 95% (99.7%) confidence limit within a context of a toy
model that assumes a perfectly spherical voids with sharp boundaries.Comment: 8 pages, 4 figures; v2 discussion expanded, references fixed, matches
version accepted by JCA
Energy-Momentum Tensor of Particles Created in an Expanding Universe
We present a general formulation of the time-dependent initial value problem
for a quantum scalar field of arbitrary mass and curvature coupling in a FRW
cosmological model. We introduce an adiabatic number basis which has the virtue
that the divergent parts of the quantum expectation value of the
energy-momentum tensor are isolated in the vacuum piece of , and
may be removed using adiabatic subtraction. The resulting renormalized
is conserved, independent of the cutoff, and has a physically transparent,
quasiclassical form in terms of the average number of created adiabatic
`particles'. By analyzing the evolution of the adiabatic particle number in de
Sitter spacetime we exhibit the time structure of the particle creation
process, which can be understood in terms of the time at which different
momentum scales enter the horizon. A numerical scheme to compute as a
function of time with arbitrary adiabatic initial states (not necessarily de
Sitter invariant) is described. For minimally coupled, massless fields, at late
times the renormalized goes asymptotically to the de Sitter invariant
state previously found by Allen and Folacci, and not to the zero mass limit of
the Bunch-Davies vacuum. If the mass m and the curvature coupling xi differ
from zero, but satisfy m^2+xi R=0, the energy density and pressure of the
scalar field grow linearly in cosmic time demonstrating that, at least in this
case, backreaction effects become significant and cannot be neglected in de
Sitter spacetime.Comment: 28 pages, Revtex, 11 embedded .ps figure
- …