1,666 research outputs found
An Isocurvature Mechanism for Structure Formation
We examine a novel mechanism for structure formation involving initial number
density fluctuations between relativistic species, one of which then undergoes
a temporary downward variation in its equation of state and generates
superhorizon-scale density fluctuations. Isocurvature decaying dark matter
models (iDDM) provide concrete examples. This mechanism solves the
phenomenological problems of traditional isocurvature models, allowing iDDM
models to fit the current CMB and large-scale structure data, while still
providing novel behavior. We characterize the decaying dark matter and its
decay products as a single component of ``generalized dark matter''. This
simplifies calculations in decaying dark matter models and others that utilize
this mechanism for structure formation.Comment: 4 pages, 3 figures, submitted to PRD (rapid communications
Optoelectric spin injection in semiconductor heterostructures without ferromagnet
We have shown that electron spin density can be generated by a dc current
flowing across a junction with an embedded asymmetric quantum well. Spin
polarization is created in the quantum well by radiative electron-hole
recombination when the conduction electron momentum distribution is shifted
with respect to the momentum distribution of holes in the spin split valence
subbands. Spin current appears when the spin polarization is injected from the
quantum well into the -doped region of the junction. The accompanied
emission of circularly polarized light from the quantum well can serve as a
spin polarization detector.Comment: 2 figure
Fluctuations in the Cosmic Microwave Background I: Form Factors and their Calculation in Synchronous Gauge
It is shown that the fluctuation in the temperature of the cosmic microwave
background in any direction may be evaluated as an integral involving scalar
and dipole form factors, which incorporate all relevant information about
acoustic oscillations before the time of last scattering. A companion paper
gives asymptotic expressions for the multipole coefficient in terms of
these form factors. Explicit expressions are given here for the form factors in
a simplified hydrodynamic model for the evolution of perturbations.Comment: 35 pages, no figures. Improved treatment of damping, including both
Landau and Silk damping; inclusion of late-time effects; several references
added; minor changes and corrections made. Accepted for publication in Phys.
Rev. D1
Quantum energy flow in mesoscopic dielectric structures
We investigate the phononic energy transport properties of mesoscopic,
suspended dielectric wires. The Landauer formula for the thermal conductance is
derived and its universal aspects discussed. We then determine the variance of
the energy current in the presence of a steady state current flow. In the final
part, some initial results are presented concerning the nature of the
temperature fluctuations of a mesoscopic electron gas thermometer due to the
absorption and emission of wire phonons.Comment: 20 pages, 2 figures. Submitted to Phys. Rev.
Reionization by active sources and its effects on the cosmic microwave background
We investigate the possible effects of reionization by active sources on the
cosmic microwave background. We concentrate on the sources themselves as the
origin of reionization, rather than early object formation, introducing an
extra period of heating motivated by the active character of the perturbations.
Using reasonable parameters, this leads to four possibilities depending on the
time and duration of the energy input: delayed last scattering, double last
scattering, shifted last scattering and total reionization. We show that these
possibilities are only very weakly constrained by the limits on spectral
distortions from the COBE FIRAS measurements. We illustrate the effects of
these reionization possibilities on the angular power spectrum of temperature
anisotropies and polarization for simple passive isocurvature models and simple
coherent sources, observing the difference between passive and active models.
Finally, we comment on the implications of this work for more realistic active
sources, such as causal white noise and topological defect models. We show for
these models that non-standard ionization histories can shift the peak in the
CMB power to larger angular scales.Comment: 21 pages LaTeX with 11 eps figures; replaced with final version
accepted for publication in Phys. Rev.
A quantum mechanical relation connecting time, temperature, and cosmological constant of the universe: Gamow's relation revisited as a special case
Considering our expanding universe as made up of gravitationally interacting
particles which describe particles of luminous matter and dark matter and dark
energy which is described by a repulsive harmonic potential among the points in
the flat 3-space, we derive a quantum mechanical relation connecting,
temperature of the cosmic microwave background radiation, age, and cosmological
constant of the universe. When the cosmological constant is zero, we get back
the Gamow's relation with a much better coefficient. Otherwise, our theory
predicts a value of the cosmological constant
when the present values of cosmic microwave background temperature of 2.728 K
and age of the universe 14 billion years are taken as input.Comment: 4 pages, 1 figure, Study of the Universe from a condensed matter
point of view, section III corrected with a single body potentia
Quantum dots based on spin properties of semiconductor heterostructures
The possibility of a novel type of semiconductor quantum dots obtained by
spatially modulating the spin-orbit coupling intensity in III-V
heterostructures is discussed. Using the effective mass model we predict
confined one-electron states having peculiar spin properties. Furthermore, from
mean field calculations (local-spin-density and Hartree-Fock) we find that even
two electrons could form a bound state in these dots.Comment: 9 pages, 3 figures. Accepted in PRB (Brief Report) (2004
The dynamics of financial stability in complex networks
We address the problem of banking system resilience by applying
off-equilibrium statistical physics to a system of particles, representing the
economic agents, modelled according to the theoretical foundation of the
current banking regulation, the so called Merton-Vasicek model. Economic agents
are attracted to each other to exchange `economic energy', forming a network of
trades. When the capital level of one economic agent drops below a minimum, the
economic agent becomes insolvent. The insolvency of one single economic agent
affects the economic energy of all its neighbours which thus become susceptible
to insolvency, being able to trigger a chain of insolvencies (avalanche). We
show that the distribution of avalanche sizes follows a power-law whose
exponent depends on the minimum capital level. Furthermore, we present evidence
that under an increase in the minimum capital level, large crashes will be
avoided only if one assumes that agents will accept a drop in business levels,
while keeping their trading attitudes and policies unchanged. The alternative
assumption, that agents will try to restore their business levels, may lead to
the unexpected consequence that large crises occur with higher probability
Observational constraint on dynamical evolution of dark energy
We use the Constitution supernova, the baryon acoustic oscillation, the
cosmic microwave background, and the Hubble parameter data to analyze the
evolution property of dark energy. We obtain different results when we fit
different baryon acoustic oscillation data combined with the Constitution
supernova data to the Chevallier-Polarski-Linder model. We find that the
difference stems from the different values of . We also fit the
observational data to the model independent piecewise constant parametrization.
Four redshift bins with boundaries at , 0.53, 0.85 and 1.8 were chosen
for the piecewise constant parametrization of the equation of state parameter
of dark energy. We find no significant evidence for evolving .
With the addition of the Hubble parameter, the constraint on the equation of
state parameter at high redshift isimproved by 70%. The marginalization of the
nuisance parameter connected to the supernova distance modulus is discussed.Comment: revtex, 16 pages, 5 figures, V2: published versio
Finite temperature effects on the collapse of trapped Bose-Fermi mixtures
By using the self-consistent Hartree-Fock-Bogoliubov-Popov theory, we present
a detailed study of the mean-field stability of spherically trapped Bose-Fermi
mixtures at finite temperature. We find that, by increasing the temperature,
the critical particle number of bosons (or fermions) and the critical
attractive Bose-Fermi scattering length increase, leading to a significant
stabilization of the mixture.Comment: 5 pages, 4 figures; minor changes, proof version, to appear in Phys.
Rev. A (Nov. 1, 2003
- …