116 research outputs found

    Proteomics Landscape of Host-Pathogen Interaction in Acinetobacter baumannii Infected Mouse Lung

    Get PDF
    Acinetobacter baumannii is an important pathogen of nosocomial infection worldwide, which can primarily cause pneumonia, bloodstream infection, and urinary tract infection. The increasing drug resistance rate of A. baumannii and the slow development of new antibacterial drugs brought great challenges for clinical treatment. Host immunity is crucial to the defense of A. baumannii infection, and understanding the mechanisms of immune response can facilitate the development of new therapeutic strategies. To characterize the system-level changes of host proteome in immune response, we used tandem mass tag (TMT) labeling quantitative proteomics to compare the proteome changes of lungs from A. baumannii infected mice with control mice 6 h after infection. A total of 6,218 proteins were identified in which 6,172 could be quantified. With threshold p 1.2 or < 0.83, we found 120 differentially expressed proteins. Bioinformatics analysis showed that differentially expressed proteins after infection were associated with receptor recognition, NADPH oxidase (NOX) activation and antimicrobial peptides. These differentially expressed proteins were involved in the pathways including leukocyte transendothelial migration, phagocyte, neutrophil degranulation, and antimicrobial peptides. In conclusion, our study showed proteome changes in mouse lung tissue due to A. baumannii infection and suggested the important roles of NOX, neutrophils, and antimicrobial peptides in host response. Our results provide a potential list of protein candidates for the further study of host-bacteria interaction in A. baumannii infection. Data are available via ProteomeXchange with identifier PXD020640

    Adaptive Output Tracking Control for Nonlinear Systems with Failed Actuators and Aircraft Flight System Applications

    No full text
    An adaptive failure compensation scheme using output feedback is proposed for a class of nonlinear systems with nonlinearities depending on the unmeasured states of systems. Adaptive high-gain K-filters are presented to suppress the nonlinearities while the proposed backstepping adaptive high-gain controller guarantees the stability of the closed-loop system and small tracking errors. Simulation results verify that the adaptive failure compensation scheme is effective

    Expanding Tandem Mass Spectral Libraries of Phosphorylated Peptides: Advances and Applications

    No full text
    The identification of phosphorylated proteins remains a challenge in proteomics, partially due to the difficulty in assigning tandem mass (MS/MS) spectra to their originating peptide sequences with correct phosphosite localization. Because of its advantages in efficiency and sensitivity, spectral library searching is a promising alternative to conventional sequence database searching. Our work aims to construct the largest collision-induced dissociation (CID) MS/MS spectral libraries of phosphorylated peptides in human (Homo sapiens) and four model organisms (Saccharomyces cerevisiae, Drosophila melanogaster, Caenorhabditis elegans, and Mus musculus) to date, to facilitate phosphorylated peptide identification by spectral library searching. We employed state-of-the-art search methods to published data and applied two recently published phosphorylation site i localization tools (PhosphoRS and PTMProphet) to ascertain the phosphorylation sites. To further increase the coverage of this library, we predicted "semi-empirical" spectra for peptides containing known phosphorylation sites from the corresponding template unphosphorylated peptide spectra. The performance of the spectral libraries built were evaluated and found to be superior to conventional database searching in terms of sensitivity. Updated spectral libraries of phosphorylated peptides are made freely available for use with the spectral search engine SpectraST. The work flow being developed will be used to continuously update the libraries when new data become available

    Asymptotic Tracking Control for a Class of Nonlinear Systems with Unknown Failures of Hysteretic Actuators

    No full text
    An adaptive failure compensation controller for a class of nonlinear systems preceded by hysteretic actuators is proposed in this paper. Three types of high-gain functions are constructed to counteract the effects of the hysteresis, bounded modeling errors, and bounded disturbances. It is shown that the proposed controller not only ensures bounded signals and asymptotic tracking but also avoids possible chattering, despite the presence of unknown hysteretic actuator failures. Simulation results verify the desired failure compensation performance

    The refractive scattering of

    Get PDF
    The experimental data of the elastic scattering angular distribution of 17F+12C at 170 MeV is analyzed by the continuum-discretized coupled channels (CDCC) method and the optical model (OM). In the CDCC calculation, the unambiguous optical potential of 16O+12C is used as the input to give the coupling potentials. A very refractive feature is found and two evident Airy minima are predicted at large angles. The one-channel calculation is also performed and gives nearly the same result. In the OM calculations, this optical potential of 16O+12C is used again and adjusted to reproduce the angular distribution of 17F+12C. The Airy oscillation appears again in the calculated angular distribution. These results indicate that the elastic scattering of 17F+12C at 170 MeV has the possibility of the nuclear rainbow phenomenon, which is probably due to the contribution from the 16O core
    • …
    corecore