41 research outputs found

    CDP-diacylglycerol phospholipid synthesis in detergent-soluble, non-raft, membrane microdomains of the endoplasmic reticulum

    Get PDF
    Phosphatidylinositol (PI) is essential for numerous cell functions and is generated by consecutive reactions catalyzed by CDP-diacylglycerol synthase (CDS) and PI synthase. In this study, we investigated the membrane organization of CDP-diacylglycerol synthesis. Separation of mildly disrupted A431 cell membranes on sucrose density gradients revealed cofractionation of CDS and PI synthase activities with cholesterol-poor, endoplasmic reticulum (ER) membranes and partial overlap with plasma membrane caveolae. Cofractionation of CDS activity with caveolae was also observed when low-buoyant density caveolin-enriched membranes were prepared using a carbonate-based method. However, immunoisolation studies determined that CDS activity localized to ER membrane fragments containing calnexin and type III inositol (1,4,5)-trisphosphate receptors but not to caveolae. Membrane fragmentation in neutral pH buffer established that CDP-diacylglycerol and PI syntheses were restricted to a subfraction of the calnexin-positive ER. In contrast to lipid rafts enriched for caveolin, cholesterol, and GM1 glycosphingolipids, the CDS-containing ER membranes were detergent soluble. In cell imaging studies, CDS and calnexin colocalized in microdomain-sized patches of the ER and also unexpectedly at the plasma membrane. These results demonstrate that key components of the PI pathway localize to nonraft, phospholipid-synthesizing microdomains of the ER that are also enriched for calnexin. Copyright © 2011 by the American Society for Biochemistry and Molecular Biology, Inc

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Mass Spectrometric Identification of a Novel Factor XIIIa Cross-Linking Site in Fibrinogen

    No full text
    Transglutaminases are a class of enzymes that catalyze the formation of a protein:protein cross-link between a lysine and a glutamine residue. These cross-links play important roles in diverse biological processes. Analysis of cross-linking sites in target proteins is required to elucidate their molecular action on target protein function and the molecular specificity of different transglutaminase isozymes. Mass-spectrometry using settings designed for linear peptide analysis and software designed for the analysis of disulfide bridges and chemical cross-links have previously been employed to identify transglutaminase cross-linking sites in proteins. As no control peptide with which to assess and improve the mass spectrometric analysis of TG cross-linked proteins was available, we developed a method for the enzymatic synthesis of a well-defined transglutaminase cross-linked peptide pair that mimics a predicted tryptic digestion product of collagen I. We then used this model peptide to determine optimal score thresholds for correct peptide identification from y- and b-ion series of fragments produced by collision-induced dissociation. We employed these settings in an analysis of fibrinogen cross-linked by the transglutaminase Factor XIIIa. This approach resulted in identification of a novel cross-linked peptide in the gamma subunit. We discuss the difference in behavior of ions derived from different cross-linked peptide sequences and the consequent demand for a more tailored mass spectrometry approach for cross-linked peptide identification compared to that routinely used for linear peptide analysis

    Modelling Pancreatic Neuroendocrine Cancer: From Bench Side to Clinic

    No full text
    Pancreatic neuroendocrine tumours (pNETs) are a heterogeneous group of epithelial tumours with neuroendocrine differentiation. Although rare (incidence of <1 in 100,000), they are the second most common group of pancreatic neoplasms after pancreatic ductal adenocarcinoma (PDAC). pNET incidence is however on the rise and patient outcomes, although variable, have been linked with 5-year survival rates as low as 40%. Improvement of diagnostic and treatment modalities strongly relies on disease models that reconstruct the disease ex vivo. A key constraint in pNET research, however, is the absence of human pNET models that accurately capture the original tumour phenotype. In attempts to more closely mimic the disease in its native environment, three-dimensional culture models as well as in vivo models, such as genetically engineered mouse models (GEMMs), have been developed. Despite adding significant contributions to our understanding of more complex biological processes associated with the development and progression of pNETs, factors such as ethical considerations and low rates of clinical translatability limit their use. Furthermore, a role for the site-specific extracellular matrix (ECM) in disease development and progression has become clear. Advances in tissue engineering have enabled the use of tissue constructs that are designed to establish disease ex vivo within a close to native ECM that can recapitulate tumour-associated tissue remodelling. Yet, such advanced models for studying pNETs remain underdeveloped. This review summarises the most clinically relevant disease models of pNETs currently used, as well as future directions for improved modelling of the disease

    Identification and characterization of differentially active pools of type IIalpha phosphatidylinositol 4-kinase activity in unstimulated A431 cells.

    No full text
    The seven known polyphosphoinositides have been implicated in a wide range of regulated and constitutive cell functions, including cell-surface signalling, vesicle trafficking and cytoskeletal reorganization. In order to understand the spatial and temporal control of these diverse cell functions it is necessary to characterize the subcellular distribution of a wide variety of polyphosphoinositide synthesis and signalling events. The predominant phosphatidylinositol kinase activity in many mammalian cell types involves the synthesis of the signalling precursor, phosphatidylinositol 4-phosphate, in a reaction catalysed by the recently cloned PI4KIIalpha (type IIalpha phosphatidylinositol 4-kinase). However the regulation of this enzyme and the cellular distribution of its product in different organelles are very poorly understood. This report identifies the existence, in unstimulated cells, of two major subcellular membrane fractions, which contain PI4KIIalpha possessing different levels of intrinsic activity. Separation of these membranes from each other and from contaminating activities was achieved by density gradient ultracentrifugation at pH 11 in a specific detergent mixture in which both membrane fractions, but not other membranes, were insoluble. Kinetic comparison of the purified membrane fractions revealed a 4-fold difference in K (m) for phosphatidylinositol and a 3.5-fold difference in V (max), thereby indicating a different mechanism of regulation to that described previously for agonist-stimulated cells. These marked differences in basal activity and the occurrence of this isozyme in multiple organelles emphasize the need to investigate cell signalling via PI4KIIalpha at the level of individual organelles rather than whole-cell lysates

    Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor

    No full text
    The type II alpha isoform of phosphatidylinositol 4-kinase has recently been shown to function in the recruitment of adaptor protein-1 complexes to the trans-Golgi network. Here we show that phosphatidylinositol 4-kinase IIalpha is also a component of highly dynamic membranes of the endosomal system where it colocalises with protein markers of the late endosome and with endocytosed epidermal growth factor. When phosphatidylinositol 4-kinase IIalpha activity was inhibited in vivo using the monoclonal antibody 4C5G or by depression of endogenous phosphatidylinositol 4-kinase IIalpha protein levels using RNA interference, ligand-bound epidermal growth factor receptor failed to traffic to late endosomes and instead accumulated in vesicles in a sub-plasma membrane compartment. Furthermore, lysosomal degradation of activated epidermal growth factor receptor was dramatically impaired in small inhibitory RNA-treated cells. We demonstrate that phosphatidylinositol 4-kinase IIalpha is necessary for the correct endocytic traffic and downregulation of activated epidermal growth factor receptor
    corecore