36,769 research outputs found
Recommended from our members
Toward improved hydrologic prediction with reduced uncertainty using sequential multi-model combination
The contemporary usage of hydrologic models has been to rely on a single model to perform the simulation and predictions. Despite the tremendous progress, efforts and investment put into developing more hydrologic models, there is no convincing claim that any particular model in existence is superior to other models for various applications and under all circumstances. This results to reducing the size of the plausible model space and often leads to predictions that may well-represent some phenomena or events at the expenses of others. Assessment of predictive uncertainty based on a single model is subject to statistical bias and most likely underestimation of uncertainty. This endorses the implementation of multi-model methods for more accurate estimation of uncertainty in hydrologic prediction. In this study, we present two methods for the combination of multiple model predictors using Bayesian Model Averaging (BMA) and Sequential Bayesian Model Combination (SBMC). Both methods are statistical schemes to infer a combined probabilistic prediction that possess more reliability and skill than the original model members produced by several competing models. This paper discusses the features of both methods and explains how the limitation of BMA can be overcome by SBMC. Three hydrologic models are considered and it is shown that multi-model combination can result in higher prediction accuracy than individual models. © 2008 ASCE
White holes and eternal black holes
We investigate isolated white holes surrounded by vacuum, which correspond to
the time reversal of eternal black holes that do not evaporate. We show that
isolated white holes produce quasi- thermal Hawking radiation. The time
reversal of this radiation, incident on a black hole precursor, constitutes a
special preparation that will cause the black hole to become eternal.Comment: 5 pages, 2 figures, revtex; revised version to appear in Classical
and Quantum Gravit
Recommended from our members
Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting
In the past few years sequential data assimilation (SDA) methods have emerged as the best possible method at hand to properly treat all sources of error in hydrological modeling. However, very few studies have actually implemented SDA methods using realistic input error models for precipitation. In this study we use particle filtering as a SDA method to propagate input errors through a conceptual hydrologic model and quantify the state, parameter and streamflow uncertainties. Recent progress in satellite-based precipitation observation techniques offers an attractive option for considering spatiotemporal variation of precipitation. Therefore, we use the PERSIANN-CCS precipitation product to propagate input errors through our hydrologic model. Some uncertainty scenarios are set up to incorporate and investigate the impact of the individual uncertainty sources from precipitation, parameters and also combined error sources on the hydrologic response. Also probabilistic measure are used to quantify the quality of ensemble prediction. Copyright 2006 by the American Geophysical Union
Anomaly induced QCD potential and Quark Decoupling
We explore the anomaly induced effective QCD meson potential in the framework
of the effective Lagrangian approach. We suggest a decoupling procedure, when a
flavored quark becomes massive, which mimics the one employed by Seiberg for
supersymmetric gauge theories. It is seen that, after decoupling, the QCD
potential naturally converts to the one with one less flavor. We study the
and dependence of the mass.Comment: 11 pages, RevTe
Recommended from our members
Improved streamflow forecasting using self-organizing radial basis function artificial neural networks
Streamflow forecasting has always been a challenging task for water resources engineers and managers and a major component of water resources system control. In this study, we explore the applicability of a Self Organizing Radial Basis (SORB) function to one-step ahead forecasting of daily streamflow. SORB uses a Gaussian Radial Basis Function architecture in conjunction with the Self-Organizing Feature Map (SOFM) used in data classification. SORB outperforms the two other ANN algorithms, the well known Multi-layer Feedforward Network (MFN) and Self-Organizing Linear Output map (SOLO) neural network for simulation of daily streamflow in the semi-arid Salt River basin. The applicability of the linear regression model was also investigated and concluded that the regression model is not reliable for this study. To generalize the model and derive a robust parameter set, cross-validation is applied and its outcome is compared with the split sample test. Cross-validation justifies the validity of the nonlinear relationship set up between input and output data. © 2004 Elsevier B.V. All rights reserved
Recommended from our members
Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response
The aim of this paper is to foster the development of an end-to-end uncertainty analysis framework that can quantify satellite-based precipitation estimation error characteristics and to assess the influence of the error propagation into hydrological simulation. First, the error associated with the satellite-based precipitation estimates is assumed as a nonlinear function of rainfall space-time integration scale, rain intensity, and sampling frequency. Parameters of this function are determined by using high-resolution satellite-based precipitation estimates and gauge-corrected radar rainfall data over the southwestern United States. Parameter sensitivity analysis at 16 selected 5° × 5° latitude-longitude grids shows about 12-16% of variance of each parameter with respect to its mean value. Afterward, the influence of precipitation estimation error on the uncertainty of hydrological response is further examined with Monte Carlo simulation. By this approach, 100 ensemble members of precipitation data are generated, as forcing input to a conceptual rainfall-runoff hydrologic model, and the resulting uncertainty in the streamflow prediction is quantified. Case studies are demonstrated over the Leaf River basin in Mississippi. Compared with conventional procedure, i.e., precipitation estimation error as fixed ratio of rain rates, the proposed framework provides more realistic quantification of precipitation estimation error and offers improved uncertainty assessment of the error propagation into hydrologic simulation. Further study shows that the radar rainfall-generated streamflow sequences are consistently contained by the uncertainty bound of satellite rainfall generated streamflow at the 95% confidence interval. Copyright 2006 by the American Geophysical Union
Trends of precipitation extreme indices over a subtropical semi-arid area using PERSIANN-CDR
In this study, satellite-based daily precipitation estimation data from precipitation estimation from remotely sensed information using artificial neural networks (PERSIANN)-climate data record (CDR) are being evaluated in Iran. This dataset (0.25°, daily), which covers over three decades of continuous observation beginning in 1983, is evaluated using rain-gauge data for the period of 1998–2007. In addition to categorical statistics and mean annual amount and number of rainy days, ten standard extreme indices were calculated to observe the behavior of daily extremes. The results show that PERSIANN-CDR exhibits reasonable performance associated with the probability of detection and false-alarm ratio, but it overestimates precipitation in the area. Although PERSIANN-CDR mostly underestimates extreme indices, it shows relatively high correlations (between 0.6316–0.7797) for intensity indices. PERSIANN-CDR data are also used to calculate the trend in annual amounts of precipitation, the number of rainy days, and precipitation extremes over Iran covering the period of 1983–2012. Our analysis shows that, although annual precipitation decreased in the western and eastern regions of Iran, the annual number of rainy days increased in the northern and northwestern areas. Statistically significant negative trends are identified in the 90th percentile daily precipitation, as well as the mean daily precipitation from wet days in the northern part of the study area. The positive trends of the maximum annual number of consecutive dry days in the eastern regions indicate that the dry periods became longer in these arid areas
The Impact of Uncertain Intellectual Property Rights on the Market For Ideas: Evidence From Patent Grant Delays
This paper considers the impact of the intellectual property (IP) system on the timing of cooperation/licensing by start-up technology entrepreneurs. If the market for technology licenses is efficient, the timing of licensing is independent of whether IP has already been granted. In contrast, the need to disclosure complementary (yet unprotected) knowledge, asymmetric information, or search costs may retard efficient technology transfer. In these cases, reductions in uncertainty surrounding the scope and extent of IP rights may facilitate trade in the market for ideas. We employ a dataset combining information about cooperative licensing and the timing of patent allowances (the administrative event when patent rights are clarified). While pre-allowance licensing does occur, the hazard rate for achieving a cooperative licensing agreement significantly increases after patent allowance. Moreover, the impact of the patent system depends on the strategic and institutional environment in which firms operate. Patent allowance seems to play a particularly important role for technologies with longer technology lifecycles or that lack alternative mechanisms such as copyright, reputation, or brokers. The findings suggest that imperfections in the market for ideas may be important, and that formal IP rights may facilitate gains from technological trade.
- …