62 research outputs found

    Message in the Sky

    Full text link
    We argue that the cosmic microwave background (CMB) provides a stupendous opportunity for the Creator of universe our (assuming one exists) to have sent a message to its occupants, using known physics. Our work does not support the Intelligent Design movement in any way whatsoever, but asks, and attempts to answer, the entirely scientific question of what the medium and message might be IF there was actually a message. The medium for the message is unique. We elaborate on this observation, noting that it requires only careful adjustment of the fundamental Lagrangian, but no direct intervention in the subsequent evolution of the universe.Comment: 3 pages, revtex; to appear in Mod.Phys.Lett.

    A speculative relation between the cosmological constant and the Planck mass

    Full text link
    We propose the relation MΛ∌(MPlMU)1/2M_\Lambda \sim (M_{Pl} M_U)^{1/2} where MΛM_\Lambda, MPl,M_{Pl}, and MUM_U denote the mass scale associated with the cosmological constant, the gravitational interaction, and the size of the universe respectively.Comment: 3 page

    Three-dimensional flux states as a model for the pseudogap phase of transition metal oxides

    Full text link
    We propose that the pseudogap state observed in the transition metal oxides can be explained by a three-dimensional flux state, which exhibits spontaneously generated currents in its ground state due to electron-electron correlations. We compare the energy of the flux state to other classes of mean field states, and find that it is stabilized over a wide range of tt and ÎŽ\delta. The signature of the state will be peaks in the neutron diffraction spectra, the location and intensity of which are presented. The dependence of the pseudogap in the optical conductivity is calculated based on the parameters in the model.Comment: submitted to Phys. Rev. B on January 8, 200

    Hologrphy and holographic dark energy model

    Full text link
    The holographic principle is used to discuss the holographic dark energy model. We find that the Bekenstein-Hawking entropy bound is far from saturation under certain conditions. A more general constraint on the parameter of the holographic dark energy model is also derived.Comment: no figures, use revtex, v2: use iop style, some typos corrected and references updated, will appear in CQ

    Categorizing Different Approaches to the Cosmological Constant Problem

    Full text link
    We have found that proposals addressing the old cosmological constant problem come in various categories. The aim of this paper is to identify as many different, credible mechanisms as possible and to provide them with a code for future reference. We find that they all can be classified into five different schemes of which we indicate the advantages and drawbacks. Besides, we add a new approach based on a symmetry principle mapping real to imaginary spacetime.Comment: updated version, accepted for publicatio

    Entropy: From Black Holes to Ordinary Systems

    Full text link
    Several results of black holes thermodynamics can be considered as firmly founded and formulated in a very general manner. From this starting point we analyse in which way these results may give us the opportunity to gain a better understanding in the thermodynamics of ordinary systems for which a pre-relativistic description is sufficient. First, we investigated the possibility to introduce an alternative definition of the entropy basically related to a local definition of the order in a spacetime model rather than a counting of microstates. We show that such an alternative approach exists and leads to the traditional results provided an equilibrium condition is assumed. This condition introduces a relation between a time interval and the reverse of the temperature. We show that such a relation extensively used in the black hole theory, mainly as a mathematical trick, has a very general and physical meaning here; in particular its derivation is not related to the existence of a canonical density matrix. Our dynamical approach of thermodynamic equilibrium allows us to establish a relation between action and entropy and we show that an identical relation exists in the case of black holes. The derivation of such a relation seems impossible in the Gibbs ensemble approach of statistical thermodynamics. From these results we suggest that the definition of entropy in terms of order in spacetime should be more general that the Boltzmann one based on a counting of microstates. Finally we point out that these results are obtained by reversing the traditional route going from the Schr\"{o}dinger equation to statistical thermodynamics

    Hint for Quintessence-like Scalars from Holographic Dark Energy

    Full text link
    We use the generalized holographic dark energy model, in which both the cosmological constant (CC) and Newton's constant G_N are scale-dependent, to set constraints on the renormalization-group (RG) evolution of both quantities phrased within quantum field theory (QFT) in a curved background. Considering the case in which the energy-momentum tensor of ordinary matter stays individually conserved, we show from the holographic dark energy requirement that the RG laws for the CC and G_N are completely determined in terms of the lowest part of the particle spectrum of an underlying QFT. From simple arguments one can then infer that the lowest-mass fields should have a Compton wavelength comparable with the size of the current Hubble horizon. Hence, although the models with the variable CC (or with both the CC and the G_N varying) are known tolead to successful cosmologies without introducing a new light degree of freedom, we nonetheless find that holography actually brings us back to the quintessence proposal. An advantage of having two different components of the vacuum energy in the cosmological setting is also briefly mentioned.Comment: 9 pages, two references added, to appear in JCA

    Identification of genes and pathways associated with cytotoxic T lymphocyte infiltration of serous ovarian cancer

    Get PDF
    BACKGROUND: Tumour-infiltrating lymphocytes (TILs) are predictors of disease-specific survival (DSS) in ovarian cancer. It is largely unknown what factors contribute to lymphocyte recruitment. Our aim was to evaluate genes and pathways contributing to infiltration of cytotoxic T lymphocytes (CTLs) in advanced-stage serous ovarian cancer. METHODS: For this study global gene expression was compared between low TIL (n=25) and high TIL tumours (n=24). The differences in gene expression were evaluated using parametric T-testing. Selectively enriched biological pathways were identified with gene set enrichment analysis. Prognostic influence was validated in 157 late-stage serous ovarian cancer patients. Using immunohistochemistry, association of selected genes from identified pathways with CTL was validated. RESULTS: The presence of CTL was associated with 320 genes and 23 pathways (P<0.05). In addition, 54 genes and 8 pathways were also associated with DSS in our validation cohort. Immunohistochemical evaluation showed strong correlations between MHC class I and II membrane expression, parts of the antigen processing and presentation pathway, and CTL recruitment. CONCLUSION: Gene expression profiling and pathway analyses are valuable tools to obtain more understanding of tumour characteristics influencing lymphocyte recruitment in advanced-stage serous ovarian cancer. Identified genes and pathways need to be further investigated for suitability as therapeutic targets
    • 

    corecore