5 research outputs found
Exploring the feasibility of tensor decomposition for analysis of fNIRS signals: a comparative study with grand averaging method
The analysis of functional near-infrared spectroscopy (fNIRS) signals has not kept pace with the increased use of fNIRS in the behavioral and brain sciences. The popular grand averaging method collapses the oxygenated hemoglobin data within a predefined time of interest window and across multiple channels within a region of interest, potentially leading to a loss of important temporal and spatial information. On the other hand, the tensor decomposition method can reveal patterns in the data without making prior assumptions of the hemodynamic response and without losing temporal and spatial information. The aim of the current study was to examine whether the tensor decomposition method could identify significant effects and novel patterns compared to the commonly used grand averaging method for fNIRS signal analysis. We used two infant fNIRS datasets and applied tensor decomposition (i.e., canonical polyadic and Tucker decompositions) to analyze the significant differences in the hemodynamic response patterns across conditions. The codes are publicly available on GitHub. Bayesian analyses were performed to understand interaction effects. The results from the tensor decomposition method replicated the findings from the grand averaging method and uncovered additional patterns not detected by the grand averaging method. Our findings demonstrate that tensor decomposition is a feasible alternative method for analyzing fNIRS signals, offering a more comprehensive understanding of the data and its underlying patterns
Wearable Sensors for Estimation of Parkinsonian Tremor Severity during Free Body Movements
Tremor is one of the main symptoms of Parkinson’s Disease (PD) that reduces the quality of life. Tremor is measured as part of the Unified Parkinson Disease Rating Scale (UPDRS) part III. However, the assessment is based on onsite physical examinations and does not fully represent the patients’ tremor experience in their day-to-day life. Our objective in this paper was to develop algorithms that, combined with wearable sensors, can estimate total Parkinsonian tremor as the patients performed a variety of free body movements. We developed two methods: an ensemble model based on gradient tree boosting and a deep learning model based on long short-term memory (LSTM) networks. The developed methods were assessed on gyroscope sensor data from 24 PD subjects. Our analysis demonstrated that the method based on gradient tree boosting provided a high correlation (r = 0.96 using held-out testing and r = 0.93 using subject-based, leave-one-out cross-validation) between the estimated and clinically assessed tremor subscores in comparison to the LSTM-based method with a moderate correlation (r = 0.84 using held-out testing and r = 0.77 using subject-based, leave-one-out cross-validation). These results indicate that our approach holds great promise in providing a full spectrum of the patients’ tremor from continuous monitoring of the subjects’ movement in their natural environment
Detection of mild cognitive impairment and Alzheimer’s disease using dual-task gait assessments and machine learning
•Detection of mild cognitive decline (MCI) and Alzheimer’s disease (AD) from dual-task gait.•First application of machine learning on dual-task assessment data for MCI and AD.•Accuracy of 78% with 77% F1-score for detecting healthy, MCI, and AD using only gait.•Accuracy of 86% with 88% F1-score for detecting MCI or AD from healthy using only gait.•Provided several interesting insights about gait changes from healthy to MCI to AD.
Early detection of mild cognitive impairment (MCI) and Alzheimer’s disease (AD) can increase access to treatment and assist in advance care planning. However, the development of a diagnostic system that d7oes not heavily depend on cognitive testing is a major challenge. We describe a diagnostic algorithm based solely on gait and machine learning to detect MCI and AD from healthy.
We collected “single-tasking” gait (walking) and “dual-tasking” gait (walking with cognitive tasks) from 32 healthy, 26 MCI, and 20 AD participants using a computerized walkway. Each participant was assessed with the Montreal Cognitive Assessment (MoCA). A set of gait features (e.g., mean, variance and asymmetry) were extracted. Significant features for three classifications of MCI/healthy, AD/healthy, and AD/MCI were identified. A support vector machine model in a one-vs.-one manner was trained for each classification, and the majority vote of the three models was assigned as healthy, MCI, or AD.
The average classification accuracy of 5-fold cross-validation using only the gait features was 78% (77% F1-score), which was plausible when compared with the MoCA score with 83% accuracy (84% F1-score). The performance of healthy vs. MCI or AD was 86% (88% F1-score), which was comparable to 88% accuracy (90% F1-score) with MoCA.
Our results indicate the potential of machine learning and gait assessments as objective cognitive screening and diagnostic tools.
Gait-based cognitive screening can be easily adapted into clinical settings and may lead to early identification of cognitive impairment, so that early intervention strategies can be initiated