772 research outputs found
Body size and the risk of biliary tract cancer: a population-based study in China
Though obesity is an established risk factor for gall bladder cancer, its role in cancers of the extrahepatic bile ducts and ampulla of Vater is less clear, as also is the role of abdominal obesity. In a population-based case–control study of biliary tract cancer in Shanghai, China, odds ratios (ORs) and 95% confidence intervals (CIs) were calculated for biliary tract cancer in relation to anthropometric measures, including body mass index (BMI) at various ages and waist-to-hip ratio (WHR), adjusting for age, sex, and education. The study included 627 patients with biliary tract cancer (368 gall bladder, 191 bile duct, 68 ampulla of Vater) and 959 healthy subjects randomly selected from the population. A higher BMI at all ages, including early adulthood (ages 20–29 years), and a greater WHR were associated with an increased risk of gall bladder cancer. A high usual adult BMI (⩾25) was associated with a 1.6-fold risk of gall bladder cancer (95% CI 1.2–2.1, P for trend <0.001). Among subjects without gallstones, BMI was also positively associated with gall bladder cancer risk. Regardless of BMI levels, increasing WHR was associated with an excess risk of gall bladder cancer risk, with those having a high BMI (⩾25) and a high WHR (>0.90) having the highest risk of gall bladder cancer (OR=12.6, 95% CI 4.8–33.2), relative to those with a low BMI and WHR. We found no clear risk patterns for cancers of the bile duct and ampulla of Vater. These results suggest that both overall and abdominal obesity, including obesity in early adulthood, are associated with an increased risk of gall bladder cancer. The increasing prevalence of obesity and cholesterol stones in Shanghai seems at least partly responsible for the rising incidence of gall bladder cancer in Shanghai
Improved Imputation of Common and Uncommon Single Nucleotide Polymorphisms (SNPs) with a New Reference Set
Statistical imputation of genotype data is an important technique for analysis of genome-wide association studies (GWAS). We have built a reference dataset to improve imputation accuracy for studies of individuals of primarily European descent using genotype data from the Hap1, Omni1, and Omni2.5 human SNP arrays (Illumina). Our dataset contains 2.5-3.1 million variants for 930 European, 157 Asian, and 162 African/African-American individuals. Imputation accuracy of European data from Hap660 or OmniExpress array content, measured by the proportion of variants imputed with R^2^>0.8, improved by 34%, 23% and 12% for variants with MAF of 3%, 5% and 10%, respectively, compared to imputation using publicly available data from 1,000 Genomes and International HapMap projects. The improved accuracy with the use of the new dataset could increase the power for GWAS by as much as 8% relative to genotyping all variants. This reference dataset is available to the scientific community through the NCBI dbGaP portal. Future versions will include additional genotype data as well as non-European populations
Multi-omics approaches explain the growth-promoting effect of the apocarotenoid growth regulator zaxinone in rice
Wang et al. report zaxinone as a global regulator of the transcriptome and metabolome, as well as of hormonal and cellular composition of rice roots. This study shows that zaxinone promotes rice growth by enhancing root sugar uptake and metabolism and modulation of cytokinin content, indicating the potential application of this compound in increasing rice performance
A Metalens with Near-Unity Numerical Aperture
The numerical aperture (NA) of a lens determines its ability to focus light
and its resolving capability. Having a large NA is a very desirable quality for
applications requiring small light-matter interaction volumes or large angular
collections. Traditionally, a large NA lens based on light refraction requires
precision bulk optics that ends up being expensive and is thus also a specialty
item. In contrast, metasurfaces allow the lens designer to circumvent those
issues producing high NA lenses in an ultra-flat fashion. However, so far,
these have been limited to numerical apertures on the same order of traditional
optical components, with experimentally reported values of NA <0.9. Here we
demonstrate, both numerically and experimentally, a new approach that results
in a diffraction limited flat lens with a near-unity numerical aperture
(NA>0.99) and sub-wavelength thickness (~{\lambda}/3), operating with
unpolarized light at 715 nm. To demonstrate its imaging capability, the
designed lens is applied in a confocal configuration to map color centers in
sub-diffractive diamond nanocrystals. This work, based on diffractive elements
able to efficiently bend light at angles as large as 82{\deg}, represents a
step beyond traditional optical elements and existing flat optics,
circumventing the efficiency drop associated to the standard, phase mapping
approach.Comment: 12 pages, 5 figure
Can the Future Influence the Present?
One widely accepted model of classical electrodynamics assumes that a moving charged particle produces both retarded and advanced fields. This formulation first appeared at least 75 years ago. It was popularized in the 1940\u27s by work of Wheeler and Feynman. But the most fundamental question associated with the model has remained unanswered: When (if ever) does the two-body problem have a unique solution? The present paper gives an answer in one special case. Imagine two identical charged particles alone in the universe moving symmetrically along the x axis. One is at x(t) and the other is at −x(t). Their motion is then governed by a system of functional differential equations involving both retarded and advanced arguments. This system together with the Newtonian initial data x(0)=x0\u3e0 and x′(0)=0 has a unique solution for all time provided x0 is sufficiently large. Perhaps the existence and uniqueness proof given for this special case will pave the way for more general results on this curious two-body problem
Evidence for Color Dichotomy in the Primordial Neptunian Trojan Population
In the current model of early Solar System evolution, the stable members of
the Jovian and Neptunian Trojan populations were captured into resonance from
the leftover reservoir of planetesimals during the outward migration of the
giant planets. As a result, both Jovian and Neptunian Trojans share a common
origin with the primordial disk population, whose other surviving members
constitute today's trans-Neptunian object (TNO) populations. The cold classical
TNOs are ultra-red, while the dynamically excited "hot" population of TNOs
contains a mixture of ultra-red and blue objects. In contrast, Jovian and
Neptunian Trojans are observed to be blue. While the absence of ultra-red
Jovian Trojans can be readily explained by the sublimation of volatile material
from their surfaces due to the high flux of solar radiation at 5AU, the lack of
ultra-red Neptunian Trojans presents both a puzzle and a challenge to formation
models. In this work we report the discovery by the Dark Energy Survey (DES) of
two new dynamically stable L4 Neptunian Trojans,2013 VX30 and 2014 UU240, both
with inclinations i >30 degrees, making them the highest-inclination known
stable Neptunian Trojans. We have measured the colors of these and three other
dynamically stable Neptunian Trojans previously observed by DES, and find that
2013 VX30 is ultra-red, the first such Neptunian Trojan in its class. As such,
2013 VX30 may be a "missing link" between the Trojan and TNO populations. Using
a simulation of the DES TNO detection efficiency, we find that there are 162
+/- 73 Trojans with Hr < 10 at the L4 Lagrange point of Neptune. Moreover, the
blue-to-red Neptunian Trojan population ratio should be higher than 17:1. Based
on this result, we discuss the possible origin of the ultra-red Neptunian
Trojan population and its implications for the formation history of Neptunian
Trojans
Transcriptomes of the Anther Sporophyte: Availability and Uses
An anther includes sporophytic tissues of three outer cell layers and an innermost layer, the tapetum, which encloses a locule where the gametophytic microspores mature to become pollen. The sporophytic tissues also comprise some vascular cells and specialized cells of the stomium aligning the long anther axis for anther dehiscence. Studies of the anther sporophytic cells, especially the tapetum, have recently expanded from the use of microscopy to molecular biology and transcriptomes. The available sequencing technologies, plus the use of laser microdissection and in silico subtraction, have produced high-quality anther sporophyte transcriptomes of rice, Arabidopsis and maize. These transcriptomes have been used for research discoveries and have potential for future discoveries in diverse areas, including developmental gene activity networking and changes in enzyme and metabolic domains, prediction of protein functions by quantity, secretion, antisense transcript regulation, small RNAs and promoters for generating male sterility. We anticipate that these studies with rice and other transcriptomes will expand to encompass other plants, whose genomes will be sequenced soon, with ever-advancing sequencing technologies. In comprehensive gene activity profiling of the anther sporophyte, studies involving transcriptomes will spearhead investigation of the downstream gene activity with proteomics and metabolomics
Random Convex Hulls and Extreme Value Statistics
In this paper we study the statistical properties of convex hulls of
random points in a plane chosen according to a given distribution. The points
may be chosen independently or they may be correlated. After a non-exhaustive
survey of the somewhat sporadic literature and diverse methods used in the
random convex hull problem, we present a unifying approach, based on the notion
of support function of a closed curve and the associated Cauchy's formulae,
that allows us to compute exactly the mean perimeter and the mean area enclosed
by the convex polygon both in case of independent as well as correlated points.
Our method demonstrates a beautiful link between the random convex hull problem
and the subject of extreme value statistics. As an example of correlated
points, we study here in detail the case when the points represent the vertices
of independent random walks. In the continuum time limit this reduces to
independent planar Brownian trajectories for which we compute exactly, for
all , the mean perimeter and the mean area of their global convex hull. Our
results have relevant applications in ecology in estimating the home range of a
herd of animals. Some of these results were announced recently in a short
communication [Phys. Rev. Lett. {\bf 103}, 140602 (2009)].Comment: 61 pages (pedagogical review); invited contribution to the special
issue of J. Stat. Phys. celebrating the 50 years of Yeshiba/Rutgers meeting
OSSOS. IX. Two Objects in Neptune's 9: 1 Resonance - Implications for Resonance Sticking in the Scattering Population
We discuss the detection in the Outer Solar System Origins Survey (OSSOS) of
two objects in Neptune's distant 9:1 mean motion resonance at semimajor axis
~au. Both objects are securely resonant on 10~Myr timescales,
with one securely in the 9:1 resonance's leading asymmetric libration island
and the other in either the symmetric or trailing asymmetric island. These
objects are the largest semimajor axis objects with secure resonant
classifications, and their detection in a carefully characterized survey allows
for the first robust resonance population estimate beyond 100~au. The detection
of these objects implies a 9:1 resonance population of objects
with (~km) on similar orbits (95\% confidence range
of ). Integrations over 4~Gyr of an ensemble of clones
spanning these objects' orbit fit uncertainties reveal that they both have
median resonance occupation timescales of ~Gyr. These timescales are
consistent with the hypothesis that these objects originate in the scattering
population but became transiently stuck to Neptune's 9:1 resonance within the
last ~Gyr of solar system evolution. Based on simulations of a model of
the current scattering population, we estimate the expected resonance sticking
population in the 9:1 resonance to be 1000-4500 objects with ; this
is marginally consistent with the OSSOS 9:1 population estimate. We conclude
that resonance sticking is a plausible explanation for the observed 9:1
population, but we also discuss the possibility of a primordial 9:1 population,
which would have interesting implications for the Kuiper belt's dynamical
history.Comment: accepted for publication in A
- …