15 research outputs found

    Standardised data on initiatives—STARDIT: Beta version

    Get PDF
    Background and objective: There is currently no standardised way to share information across disciplines about initiatives, including fields such as health, environment, basic science, manufacturing, media and international development. All problems, including complex global problems such as air pollution and pandemics require reliable data sharing between disciplines in order to respond effectively. Current reporting methods also lack information about the ways in which different people and organisations are involved in initiatives, making it difficult to collate and appraise data about the most effective ways to involve different people. The objective of STARDIT (Standardised Data on Initiatives) is to address current limitations and inconsistencies in sharing data about initiatives. The STARDIT system features standardised data reporting about initiatives, including who has been involved, what tasks they did, and any impacts observed. STARDIT was created to help everyone in the world find and understand information about collective human actions, which are referred to as ‘initiatives’. STARDIT enables multiple categories of data to be reported in a standardised way across disciplines, facilitating appraisal of initiatives and aiding synthesis of evidence for the most effective ways for people to be involved in initiatives. This article outlines progress to date on STARDIT; current usage; information about submitting reports; planned next steps and how anyone can become involved. Method: STARDIT development is guided by participatory action research paradigms, and has been co-created with people from multiple disciplines and countries. Co-authors include cancer patients, people affected by rare diseases, health researchers, environmental researchers, economists, librarians and academic publishers. The co-authors also worked with Indigenous peoples from multiple countries and in partnership with an organisation working with Indigenous Australians. Results and discussion: Over 100 people from multiple disciplines and countries have been involved in co-designing STARDIT since 2019. STARDIT is the first open access web-based data-sharing system which standardises the way that information about initiatives is reported across diverse fields and disciplines, including information about which tasks were done by which stakeholders. STARDIT is designed to work with existing data standards. STARDIT data will be released into the public domain (CC0) and integrated into Wikidata; it works across multiple languages and is both human and machine readable. Reports can be updated throughout the lifetime of an initiative, from planning to evaluation, allowing anyone to be involved in reporting impacts and outcomes. STARDIT is the first system that enables sharing of standardised data about initiatives across disciplines. A working Beta version was publicly released in February 2021 (ScienceforAll.World/STARDIT). Subsequently, STARDIT reports have been created for peer-reviewed research in multiple journals and multiple research projects, demonstrating the usability. In addition, organisations including Cochrane and Australian Genomics have created prospective reports outlining planned initiatives. Conclusions: STARDIT can help create high-quality standardised information on initiatives trying to solve complex multidisciplinary global problems

    Diosgenin, a Steroidal Saponin, Inhibits Migration and Invasion of Human Prostate Cancer PC-3 Cells by Reducing Matrix Metalloproteinases Expression

    Get PDF
    BACKGROUND: Diosgenin, a steroidal saponin obtained from fenugreek (Trigonella foenum graecum), was found to exert anti-carcinogenic properties, such as inhibiting proliferation and inducing apoptosis in a variety of tumor cells. However, the effect of diosgenin on cancer metastasis remains unclear. The aim of the study is to examine the effect of diosgenin on migration and invasion in human prostate cancer PC-3 cells. METHODS AND PRINCIPAL FINDINGS: Diosgenin inhibited proliferation of PC-3 cells in a dose-dependent manner. When treated with non-toxic doses of diosgenin, cell migration and invasion were markedly suppressed by in vitro wound healing assay and Boyden chamber invasion assay, respectively. Furthermore, diosgenin reduced the activities of matrix metalloproteinase-2 (MMP-2) and MMP-9 by gelatin zymography assay. The mRNA level of MMP-2, -9, -7 and extracellular inducer of matrix metalloproteinase (EMMPRIN) were also suppressed while tissue inhibitor of metalloproteinase-2 (TIMP-2) was increased by diosgenin. In addition, diosgenin abolished the expression of vascular endothelial growth factor (VEGF) in PC-3 cells and tube formation of endothelial cells. Our immunoblotting assays indicated that diosgenin potently suppressed the phosphorylation of phosphatidylinositide-3 kinase (PI3K), Akt, extracellular signal regulating kinase (ERK) and c-Jun N-terminal kinase (JNK). In addition, diosgenin significantly decreased the nuclear level of nuclear factor kappa B (NF-κB), suggesting that diosgenin inhibited NF-κB activity. CONCLUSION/SIGNIFICANCE: The results suggested that diosgenin inhibited migration and invasion of PC-3 cells by reducing MMPs expression. It also inhibited ERK, JNK and PI3K/Akt signaling pathways as well as NF-κB activity. These findings reveal new therapeutic potential for diosgenin in anti-metastatic therapy

    Citizen science in environmental and ecological sciences

    No full text
    Citizen science is an increasingly acknowledged approach applied in many scientific domains, and particularly within the environmental and ecological sciences, in which non-professional participants contribute to data collection to advance scientific research. We present contributory citizen science as a valuable method to scientists and practitioners within the environmental and ecological sciences, focusing on the full life cycle of citizen science practice, from design to implementation, evaluation and data management. We highlight key issues in citizen science and how to address them, such as participant engagement and retention, data quality assurance and bias correction, as well as ethical considerations regarding data sharing. We also provide a range of examples to illustrate the diversity of applications, from biodiversity research and land cover assessment to forest health monitoring and marine pollution. The aspects of reproducibility and data sharing are considered, placing citizen science within an encompassing open science perspective. Finally, we discuss its limitations and challenges and present an outlook for the application of citizen science in multiple science domains
    corecore