561 research outputs found

    Do Degradation of Urban Greenery and Increasing Land Prices Often Come along with Urbanization?

    Get PDF
    In the wake of urbanization, driven by a variety of individual and socio-economic merits, human’s basic residential needs and standard of living may be compromised in the urban areas, as the population agglomerates. However, the knowledge of the associations of urbanization with urban greenery and residential land prices is still in the pursuing process. This empirical research aims to contribute whether the degradation of essential living conditions is a trade-off for the pursued urban life. Hence, Taiwan is selected as the case to analyze the associated relations primarily between 1976 and 2016. The research methods involve descriptive statistics, the panel data analysis, and the cluster analysis. The panel data analysis demonstrates that degraded urban greenery and increasing residential land prices came along with the urbanization in Taiwan between 2001 and 2016. Policy implications include rethinking of the building coverage rate for renewed buildings for more plant-friendly ground, the adoption of building setback policy for more accessible mid-air mini-parks, and avoiding residential units as an investment commodity

    COMPARISON OF KINESIO TAPING AND SPORTS TAPING IN FUNCTIONAL ACTIVITIES FOR COLLEGIATE BASKETBALL PLAYERS: A PILOT STUDY

    Get PDF
    The purpose of this study was to identify the effects of kinesio taping and sports taping for collegiate basketball players in functional activities. Seventeen collegiate basketball players were recruited in particapitate this study and divided into three groups(Kinesio taping group, sports taping group and control group) in random. The ankle range of motion, plantarflexor muscle strength and endurance, vertical jump, and dynamic balance were measured before and after taping applied. The results was showed significantly increasing in ankle plantar-flexion range for Kinesio taping group(p=.03). There were no remarkable difference in the other measurements. In conclusion, the Kinesio Taping would not restriction the ankle plantar-flexion range. In future, we may recruited more subjects to identify the effect of Kinesio taping in functional activities for collegiate bsketball players

    EBV-positive Hodgkin lymphoma is associated with suppression of p21cip1/waf1 and a worse prognosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 30-50% of Hodgkin lymphomas (HLs) harbor the Epstein-Barr virus (EBV), but the impact of EBV infection on clinical outcomes has been unclear. EBV-encoded small RNAs (<it>EBER</it>s) are presented in all EBV-infected cells, but their functions are still less understood.</p> <p>Results</p> <p><it>EBER1 </it>was transfected into two HL cell lines, KMH2 and L428, and microarrays were used to screen for <it>EBER1</it>-induced changes. We found that <it>EBER1 </it>suppressed <it>p21</it><sup>cip1/waf1 </sup>transcription in HL cell lines. In addition, positive regulators of <it>p21</it><sup>cip1/waf1 </sup>transcription, such as p53, EGR1, and STAT1, were decreased. Suppression of <it>p21</it><sup>cip1/waf1 </sup>in the <it>EBER1</it><sup>+ </sup>HL cell lines was associated with increased resistance to histone deacetylase inhibitors or proteasome inhibitors, drugs known to cause apoptosis by increasing p21<sup>cip1/waf1 </sup>levels. On biopsy specimens, EBV<sup>+ </sup>HLs had weaker expression of both p21<sup>cip1/waf1 </sup>and active caspase 3. Clinically, suppression of p21<sup>cip1/waf1 </sup>in EBV<sup>+ </sup>HLs was associated with a worse 2-year disease-free survival rate (45% for EBV<sup>+ </sup>HLs <it>vs</it>. 77% for EBV<sup>- </sup>HLs, <it>p </it>= 0.002).</p> <p>Conclusion</p> <p>Although the underlying mechanisms are still relatively unclear, <it>EBER1 </it>inhibits <it>p21</it><sup>cip1/waf1 </sup>transcription and prevents apoptosis through down-regulation of p53, EGR1, and STAT1. The anti-apoptotic activity of <it>EBER1 </it>may be important in the rescue of Reed-Sternberg cells from drug-induced apoptosis and in the clinical behaviors of EBV<sup>+ </sup>HLs.</p

    Multiple upstream modules regulate zebrafish myf5 expression

    Get PDF
    BACKGROUND: Myf5 is one member of the basic helix-loop-helix family of transcription factors, and it functions as a myogenic factor that is important for the specification and differentiation of muscle cells. The expression of myf5 is somite- and stage-dependent during embryogenesis through a delicate regulation. However, this complex regulatory mechanism of myf5 is not clearly understood. RESULTS: We isolated a 156-kb bacterial artificial chromosome clone that includes an upstream 80-kb region and a downstream 70-kb region of zebrafish myf5 and generated a transgenic line carrying this 156-kb segment fused to a green fluorescent protein (GFP) reporter gene. We find strong GFP expression in the most rostral somite and in the presomitic mesoderm during segmentation stages, similar to endogenous myf5 expression. Later, the GFP signals persist in caudal somites near the tail bud but are down-regulated in the older, rostral somites. During the pharyngula period, we detect GFP signals in pectoral fin buds, dorsal rostral myotomes, hypaxial myotomes, and inferior oblique and superior oblique muscles, a pattern that also corresponds well with endogenous myf5 transcripts. To characterize the specific upstream cis-elements that regulate this complex and dynamic expression pattern, we also generated several transgenic lines that harbor various lengths within the upstream 80-kb segment. We find that (1) the -80 kb/-9977 segment contains a fin and cranial muscle element and a notochord repressor; (2) the -9977/-6213 segment contains a strong repressive element that does not include the notochord-specific repressor; (3) the -6212/-2938 segment contains tissue-specific elements for bone and spinal cord; (4) the -2937/-291 segment contains an eye enhancer, and the -2937/-2457 segment is required for notochord and myocyte expression; and (5) the -290/-1 segment is responsible for basal transcription in somites and the presomitic mesoderm. CONCLUSION: We suggest that the cell lineage-specific expression of myf5 is delicately orchestrated by multiple modules within the distal upstream region. This study provides an insight to understand the molecular control of myf5 and myogenesis in the zebrafish

    Toona sinensis

    Get PDF
    Toona sinensis leaf (TSL) is commonly used as a vegetable and in spice in Asia. In this study, feeding with aqueous extract of TSL (TSL-A) alleviated oxidative stress and recovered the motility and functions of sperm in rats under oxidative stress. Protein expressions in testes identified by proteomic analysis and verified by Western blot demonstrated that TSL-A not only downregulated the level of glutathione transferase mu6 (antioxidant system), heat shock protein 90 kDa-β (protein misfolding repairing system), cofilin 2 (spermatogenesis), and cyclophilin A (apoptosis) but also upregulated crease3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 (steroidogenesis), heat shock glycoprotein 96, and pancreatic trypsin 1 (sperm-oocyte interaction). These results indicate that TSL-A promotes the functions of sperm and testes via regulating multiple testicular proteins in rats under oxidative stress, suggesting that TSL-A is a valuable functional food supplement to improve functions of sperm and testes for males under oxidative stress

    Ample Pairs

    Full text link
    We show that the ample degree of a stable theory with trivial forking is preserved when we consider the corresponding theory of belles paires, if it exists. This result also applies to the theory of HH-structures of a trivial theory of rank 11.Comment: Research partially supported by the program MTM2014-59178-P. The second author conducted research with support of the programme ANR-13-BS01-0006 Valcomo. The third author would like to thank the European Research Council grant 33882

    Novel artificial tricalcium phosphate and magnesium composite graft facilitates angiogenesis in bone healing

    Get PDF
    Bone grafting is the standard treatment for critical bone defects, but autologous grafts have limitations like donor site morbidity and limited availability, while commercial artificial grafts may have poor integration with surrounding bone tissue, leading to delayed healing. Magnesium deficiency negatively impacts angiogenesis and bone repair. Therefore, incorporating magnesium into a synthetic biomaterial could provide an excellent bone substitute. This study aims to evaluate the morphological, mechanical, and biological properties of a calcium phosphate cement (CPC) sponge composed of tetracalcium phosphate (TTCP) and monocalcium phosphate monohydrate (MCPM), which could serve as an excellent bone substitute by incorporating magnesium. This study aims to develop biomedical materials composed mainly of TTCP and MCPM powder, magnesium powder, and collagen. The materials were prepared using a wet-stirred mill and freeze-dryer methods. The particle size, composition, and microstructure of the materials were investigated. Finally, the biological properties of these materials, including 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay for biocompatibility, effects on bone cell differentiation by alkaline phosphatase (ALP) activity assay and tartrate-resistant acid phosphatase (TRAP) activity assay, and endothelial cell tube formation assay for angiogenesis, were evaluated as well. The data showed that the sub-micron CPC powder, composed of TTCP/MCPM in a 3.5:1 ratio, had a setting time shorter than 15 minutes and a compressive strength of 4.39±0.96 MPa. This reveals that the sub-micron CPC powder had an adequate setting time and mechanical strength. We found that the sub-micron CPC sponge containing magnesium had better biocompatibility, including increased proliferation and osteogenic induction effects without cytotoxicity. The CPC sponge containing magnesium also promoted angiogenesis. In summary, we introduced a novel CPC sponge, which had a similar property to human bone promoted the biological functions of bone cells, and could serve as a promising material used in bone regeneration for critical bone defects. [Abstract copyright: Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.
    corecore